Skip to main content

PromptFusion: A Low-Cost Prompt-Based Task Composition for Multi-task Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

  • 1695 Accesses

Abstract

Prompt-tuning takes advantage of large-scale pretrained language models and achieves great performance while being more parameter-efficient. However, existing prompt-tuning methods require tuning different pretrained language models for each specific task, and fail to utilize information across different tasks, which limits their applicability in complex situations. To address above issues, we propose PromptFusion, a unique prompt-based multi-task transfer learning approach which learns knowledge from multiple tasks and incorporates for the target task at low cost. The proposed approach first learns task-specific parameters with prompts to extract information individually, then, a fusion module is designed to aggregate information. Our method is interpretable because it can explain which sources of tasks are the crucial factors to influence the model decision on the target task. We also examine a more effective way to encapsulate information by incorporating parallel adapter modules into transformer layers, and this makes a linkage between parameter-efficient transfer learning methods. We empirically evaluate our methods on the GLUE benchmark and a variety of hard NLU tasks. The results show that our approach outperforms full fine-tuning and other parameter-efficient multi-task methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  2. Carreras, X., Màrquez, L.: Introduction to the conll-2004 shared task: semantic role labeling. In: HLT-NAACL, pp. 89–97 (2004)

    Google Scholar 

  3. Carreras, X., Màrquez, L.: Introduction to the conll-2005 shared task: semantic role labeling. In: CoNLL-2005, pp. 152–164 (2005)

    Google Scholar 

  4. Caruana, R.: Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  6. Fedus, W., Zoph, B., Shazeer, N.: Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. J. Mach. Learn. Res. 23(120), 1–39 (2022)

    Google Scholar 

  7. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)

    Article  Google Scholar 

  8. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. In: ICLR (2017)

    Google Scholar 

  9. He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., Neubig, G.: Towards a unified view of parameter-efficient transfer learning. In: ICLR (2022)

    Google Scholar 

  10. He, Y., et al.: Hyperprompt: prompt-based task-conditioning of transformers. In: International Conference on Machine Learning, pp. 8678–8690. PMLR (2022)

    Google Scholar 

  11. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: ICML, pp. 2790–2799 (2019)

    Google Scholar 

  12. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. In: EMNLP, pp. 3045–3059 (2021)

    Google Scholar 

  13. Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation. In: ACL/IJCNLP, pp. 4582–4597 (2021)

    Google Scholar 

  14. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586 (2021)

  15. Liu, X., et al.: P-tuning: prompt tuning can be comparable to fine-tuning across scales and tasks. In: ACL, pp. 61–68 (2022)

    Google Scholar 

  16. Liu, X., He, P., Chen, W., Gao, J.: Multi-task deep neural networks for natural language understanding. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) ACL, pp. 4487–4496 (2019)

    Google Scholar 

  17. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  18. Mahabadi, R.K., Ruder, S., Dehghani, M., Henderson, J.: Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. In: ACL/IJCNLP, pp. 565–576 (2021)

    Google Scholar 

  19. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)

    Google Scholar 

  20. Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., Gurevych, I.: AdapterFusion: non-destructive task composition for transfer learning. In: EACL, pp. 487–503 (2021)

    Google Scholar 

  21. Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y.: Conll-2012 shared task: modeling multilingual unrestricted coreference in ontonotes. In: EMNLP-CoNLL, pp. 1–40 (2012)

    Google Scholar 

  22. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  23. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 140:1–140:67 (2020)

    Google Scholar 

  24. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. In: EMNLP, pp. 2383–2392 (2016)

    Google Scholar 

  25. Sang, E.F.T.K., Meulder, F.D.: Introduction to the conll-2003 shared task: language-independent named entity recognition. In: HLT-NAACL, pp. 142–147 (2003)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  27. Vu, T., Lester, B., Constant, N., Al-Rfou’, R., Cer, D.: SPoT: better frozen model adaptation through soft prompt transfer. In: ACL, pp. 5039–5059 (2022)

    Google Scholar 

  28. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE: a multi-task benchmark and analysis platform for natural language understanding. In: ICLR (2019)

    Google Scholar 

  29. Weischedel, R., et al.: Ontonotes release 5.0 ldc2013t19. In: LDC (2013)

    Google Scholar 

  30. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: EMNLP, pp. 38–45 (2020)

    Google Scholar 

  31. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, H., He, H., Zhu, Q., Xue, X. (2023). PromptFusion: A Low-Cost Prompt-Based Task Composition for Multi-task Learning. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics