Skip to main content

A Fast and Efficient Algorithm for Filtering the Training Dataset

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

  • 1499 Accesses

Abstract

The goal of this paper is to present a new algorithm that filters out inconsistent instances from the training dataset for further usage with machine learning algorithms or learning of neural networks. The idea of this algorithm is based on the previous state-of-the-art algorithm, which uses the concept of local sets. Sophisticated modification of the definition of local sets changes the merits of the algorithm. It is additionally supported by locality-sensitive hashing used for searching for nearest neighbors, composing a new efficient (\(O(n\log n)\)), and an accurate algorithm.

Results prepared on many benchmarks show that the algorithm is as accurate as previous but strongly reduces the time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnaiz-González, A., Díez-Pastor, J.-F., Rodríguez, J.J., García-Osorio, C.: Instance selection of linear complexity for big data: Knowl.-Based Syst. 107, 83–95 (2016)

    Google Scholar 

  2. Bawa, M., Condie, T., Ganesan, P.: LSH forest: self-tuning indexes for similarity search. In: Proceedings of the 14th International Conference on World Wide Web, pp. 651–660. Chiba, Japan (2005)

    Google Scholar 

  3. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning algorithms. Data Min. Knowl. Disc. 6(2), 153–172 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. Instit. Electr. Electron. Eng. Trans. Inf. Theory 13(1), 21–27 (1967)

    MATH  Google Scholar 

  5. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012)

    Article  Google Scholar 

  6. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbor: towards removing the curse of dimensionality. Theory Comput. 8, 321–350 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Indyk, P., Motwani, R.: Approximate nearest neighbor—towards removing the curse of dimensionality. In: The Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604–613 (1998)

    Google Scholar 

  8. Grochowski, M., Jankowski, N.: Comparison of instance selection algorithms II. results and comments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 580–585. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_87

    Chapter  MATH  Google Scholar 

  9. Jankowski, N., Orliński, M.: Fast encoding length-based prototype selection algorithms. Australian J. Intell. Inf. Process. Syst. 16(3), 59–66 (2019). Special Issue: Neural Information Processing 26th International Conference on Neural Information Processing. http://ajiips.com.au/iconip2019/docs/ajiips/v16n3.pdf

  10. Leyva, E., González, A., Pérez, R.: Three new instance selection methods based on local sets: a comparative study with several approaches from a bi-objective perspective. Pattern Recogn. 48(4), 1523–1537 (2015). https://doi.org/10.1016/j.patcog.2014.10.001

    Article  Google Scholar 

  11. Merz, C.J., Murphy, P.M.: UCI repository of machine learning databases (1998). http://www.ics.uci.edu/~mlearn/MLRepository.html

  12. Olvera-López, J.A., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F.: A new fast prototype selection method based on clustering. Pattern Anal. Appl. 13(2), 131–141 (2009)

    Article  MathSciNet  Google Scholar 

  13. Orliński, M., Jankowski, N.: Fast t-SNE algorithm with forest of balanced LSH trees and hybrid computation of repulsive forces. Knowl.-Based Syst. 206, 1–16 (2020). https://doi.org/10.1016/j.knosys.2020.106318

    Article  Google Scholar 

  14. Orliński, M., Jankowski, N.: \(O(m \log m)\) instance selection algorithms–RR-DROPs. In: IEEE World Congress on Computational Intelligence, pp. 1–8. IEEE Press (2020). https://doi.org/10.1109/IJCNN48605.2020.9207158. http://www.is.umk.pl/~norbert/publications/20-FastDROP.pdf

  15. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 2(3), 408–421 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Jankowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jankowski, N. (2023). A Fast and Efficient Algorithm for Filtering the Training Dataset. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics