Skip to main content

Neural Network Compression by Joint Sparsity Promotion and Redundancy Reduction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

  • 1640 Accesses

Abstract

Compression of convolutional neural network models has recently been dominated by pruning approaches. A class of previous works focuses solely on pruning the unimportant filters to achieve network compression. Another important direction is the design of sparsity-inducing constraints which has also been explored in isolation. This paper presents a novel training scheme based on composite constraints that prune redundant filters and minimize their effect on overall network learning via sparsity promotion. Also, as opposed to prior works that employ pseudo-norm-based sparsity-inducing constraints, we propose a sparse scheme based on gradient counting in our framework. Our tests on several pixel-wise segmentation benchmarks show that the number of neurons and the memory footprint of networks in the test phase are significantly reduced without affecting performance. MobileNetV3 and UNet, two well-known architectures, are used to test the proposed scheme. Our network compression method not only results in reduced parameters but also achieves improved performance compared to MobileNetv3, which is an already optimized architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/JanMarcelKezmann/TensorFlow-Advanced-Segmentation-Models.

  2. 2.

    https://github.com/xiaochus/MobileNetV3.

References

  1. Khan, T.M., Robles-Kelly, A.: Machine learning: Quantum vs classical IEEE Access.8, pp. 275–294 (2020)

    Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classification with deep convolutional neural networks, In Advances in Neural Information Processing Systems, 25, pp. 1–9 (2012)

    Google Scholar 

  3. Lin, D., Talathi, S., Annapureddy, S.: Fixed point quantization of deep convolutional networks, In: International Conference on Machine Learning, pp. 2849–2858 (2016)

    Google Scholar 

  4. Khan, T.M., Naqvi, S.S, Meijering, E.: Leveraging image complexity in macro-level neural network design for medical image segmentation, (2021) arXiv preprint arXiv:2112.11065

  5. Le, Q.V.: Building high-level features using large scale unsupervised learning In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8595–8598 (2013)

    Google Scholar 

  6. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649 (2012)

    Google Scholar 

  7. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  8. Khan, T. M., Robles-Kelly, A., Naqvi, S. S.: T-net: a resource-constrained tiny convolutional neural network for medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 644–653 (2022)

    Google Scholar 

  9. Khan, T.M., et al.: Width-wise vessel bifurcation for improved retinal vessel segmentation. Biomed. Signal Process. Control 71, 103169 (2022)

    Article  Google Scholar 

  10. Khan, T.M., Robles-Kelly, A., Naqvi, S.S., Arsalan, M.: Residual Multiscale Full Convolutional Network (RM-FCN) for High Resolution Semantic Segmentation of Retinal Vasculature. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds.) S+SSPR 2021. LNCS, vol. 12644, pp. 324–333. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73973-7_31

    Chapter  Google Scholar 

  11. Khan, T.M., Robles-Kelly, A., Naqvi, S.S.: Rc-net: a convolutional neural network for retinal vessel segmentation. In: Digital Image Computing: Techniques and Applications (DICTA). IEEE 2021, 01–07 (2021)

    Google Scholar 

  12. Khan, T.M., Robles-Kelly, A.: A Derivative-Free Method for Quantum Perceptron Training in Multi-layered Neural Networks. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1333, pp. 241–250. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63823-8_29

    Chapter  Google Scholar 

  13. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited numerical precision. In: International Conference on Machine Learning, pp. 1737–1746 (2015)

    Google Scholar 

  14. Alemu, H.Z., Zhao, J., Li, F., Wu, W.: Group \(l_{1/2}\) regularization for pruning hidden layer nodes of feedforward neural networks. IEEE Access 7, 9540–9557 (2019)

    Article  Google Scholar 

  15. Castellano, G., Fanelli, A., Pelillo, M.: An iterative pruning algorithm for feedforward neural networks. IEEE Trans. Neural Netw. 8(3), 519–531 (1997)

    Article  Google Scholar 

  16. Zhang, Z., Qiao, J.: A node pruning algorithm for feedforward neural network based on neural complexity. In: International Conference on Intelligent Control and Information Processing, pp. 406–410 (2010)

    Google Scholar 

  17. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: International Conference on Neural Information Processing Systems, pp. 2082–2090 (2016)

    Google Scholar 

  18. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. (2017) arXiv:1608.08710

  19. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: IEEE International Conference on Computer Vision, pp. 1398–1406 (2017)

    Google Scholar 

  20. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming, In: IEEE International Conference on Computer Vision, pp. 2755–2763 (2017)

    Google Scholar 

  21. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, vol. 28, pp. 1–9 (2015)

    Google Scholar 

  22. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural networks for mobile devices. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4820–4828 (2016)

    Google Scholar 

  23. Tai, C., Xiao, T., Zhang, Y., Wang, X., Ee, W.: Convolutional neural networks with low-rank regularization. (2016) arXiv:1511.06067

  24. Yu, J., Lukefahr, A., Palframan, D., Dasika, G., Das, R., Mahlke, S.: Scalpel: customizing DNN pruning to the underlying hardware parallelism In: ACM/IEEE Annual International Symposium on Computer Architecture, pp. 548–560 (2017)

    Google Scholar 

  25. Prakash, A., Storer, J., Florencio, D., Zhang, C.: RePr: improved training of convolutional filters. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10 658–10 667 (2019)

    Google Scholar 

  26. Zhou, H., Alvarez, J. M., Porikli, F.: Less is more: towards compact CNNs. In: European Conference on Computer Vision, pp. 662–677 (2016)

    Google Scholar 

  27. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  28. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

    Google Scholar 

  29. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition using structure from motion point clouds. In: European Conference on Computer Vision, 2008, pp. 44–57 (2008)

    Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  31. Howard, A., et al.: Searching for MobileNetV3 In: IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  32. Kezmann, J.-M.: Tensorflow advanced segmentation models (2020). https://github.com/ JanMarcelKezmann/TensorFlow-Advanced-Segmentation-Models

  33. Xiaochus, L.: A Keras implementation of MobileNetV3 and lite R-ASPP semantic segmentation (2020). https://github.com/xiaochus/MobileNetV3,

  34. Maier-Hein, L., et al.: Metrics reloaded: Pitfalls and recommendations for image analysis validation (2022) arXiv:2206.01653

  35. Everingham, M., Eslami, S.M.A., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The PASCAL visual object classes challenge: A retrospective. Int. J. Comput. Vision 111, 98–136 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq M. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, T.M., Naqvi, S.S., Robles-Kelly, A., Meijering, E. (2023). Neural Network Compression by Joint Sparsity Promotion and Redundancy Reduction. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics