Skip to main content

Dynamic Characteristics of Micro-state Transition Defined by Instantaneous Frequency in the Electroencephalography of Schizophrenia Patients

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13624))

Included in the following conference series:

  • 797 Accesses

Abstract

Recently proposed dynamic functional connectivity (dFC) approach, which focuses on the degree of spatial-temporal variability in regional-pair-wise functional connectivity (FC), is able to detect neural network alternations as the core neural basis of schizophrenia (SZ). Moreover, from the perspective of “emergence” in complex network science, the importance of the establishment of a method to evaluate the neural interactions in the whole brain network, not separating each pair-wise interaction, is emphasized. We proposed the micro-state approach based on the whole-brain instantaneous frequency distribution as one of these methods; this approach opens a new avenue as an evaluation method to detect cognitive function impairment and pathology. Thus, we hypothesized that the application of this micro-state approach to neural activity could detect the other aspects of brain network alterations for SZ previously elucidated in conventional FC and dFC. We applied the micro-state approach to electroencephalography (EEG) signals of SZ patients and healthy controls. The results revealed the alternation of dynamical leading phase transitions between the frontal and occipital regions and right and left hemispheric regions at the beta and gamma bands. This alternation suggested the corpus callosum impairments and abnormal enhancement of functional hub structure at the fast bands as topology of whole brain functional network. Thus, our proposed micro-state approach succeeded in detecting the state transition alternations concerning SZ pathology. This approach might contribute in elucidating new aspects of dFC, thereby resulting in the discovery of a biomarker for SZ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Green, M.F., Horan, W.P., Lee, J.: Nonsocial and social cognition in schizophrenia: current evidence and future directions. World Psychiatry 18(2), 146–161 (2019)

    Google Scholar 

  2. Correll, C.U., Schooler, N.R.: Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiat. Dis. Treat. 16, 519 (2020)

    Google Scholar 

  3. Friston, K.J.: The disconnection hypothesis. Schizoph. Res. 30(2), 115–125 (1998)

    Google Scholar 

  4. Medaglia, J.D., Lynall, M.-E., Bassett, D.S.: Cognitive network neuroscience. J. Cogn. Neurosci.27(8), 1471–1491 (2015)

    Google Scholar 

  5. Cohen, J.R.: The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. NeuroImage 180, 515–525 (2018)

    Google Scholar 

  6. Takahashi, T., Goto, T., Nobukawa, S., Tanaka, Y., Kikuchi, M., Higashima, M., Wada, Y.: Abnormal functional connectivity of high-frequency rhythms in drug-naïve schizophrenia. Clin. Neurophysiol. 129(1), 222–231 (2018)

    Article  Google Scholar 

  7. Sporns, O., Honey, C.J.: RolfKotter. Identification and classification of hubs in brain networks. PLoS ONE 2(10), e1049 (2007)

    Google Scholar 

  8. Misic, B., Vakorin, V.A., Paus, T., McIntosh, A.R.: Functional embedding predicts the variability of neural activity. Front. Syst. Neurosci. 5, 90 (2011)

    Google Scholar 

  9. Nobukawa, S., Kikuchi, M., Takahashi, T.: Changes in functional connectivity dynamics with aging: a dynamical phase synchronization approach. Neuroimage 188, 357–368 (2019)

    Article  Google Scholar 

  10. Takahash, T., et al.: Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis. Neuroimage 51(1), 173–182 (2010)

    Google Scholar 

  11. Fernández, A., Gómez, C., Hornero, R., José López-Ibor, J.: Complexity and schizophrenia. Progr. Neuro-Psychopharm. Biol. Psychiatr. 45, 267–276 (2013)

    Google Scholar 

  12. Dong, D., Duan, M., Wang, Y., Zhang, X., Jia, X., Li, Y., Xin, F., Yao, D., Luo, C.: Reconfiguration of dynamic functional connectivity in sensory and perceptual system in schizophrenia. Cereb. Cortex 29(8), 3577–3589 (2019)

    Article  Google Scholar 

  13. Kang, J., Pae, C., Park, H.-J.: Graph-theoretical analysis for energy landscape reveals the organization of state transitions in the resting-state human cerebral cortex. PLoS ONE 14(9), e0222161 (2019)

    Article  Google Scholar 

  14. Allen, E.A., et al.: Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex 24(3), 663–676 (2014))

    Google Scholar 

  15. Tewarie, P., et al.: Tracking dynamic brain networks using high temporal resolution meg measures of functional connectivity. Neuroimage 200, 38–50 (2019)

    Google Scholar 

  16. Hu, M.L., et al.: A review of the functional and anatomical default mode network iMn schizophrenia. Neurosci. Bull. 33(1), 73–84 (2017)

    Google Scholar 

  17. Yin, W., et al.: The emergence of a functionally flexible brain during early infancy. Proc. Natl. Acad. Sci. 117(38), 23904–23913 (2020)

    Google Scholar 

  18. Sporns, O., Betzel, R.F.: Modular brain networks. Ann. Rev. Psychol. 67, 613–640 (2016)

    Google Scholar 

  19. Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., Young, J.-G., Petri, G.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nobukawa, S., Ikeda, T., Kikuchi, M., Takahashi, T.: Dynamical characteristics of state transition defined by neural activity of phase in alzheimer’s disease. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. CCIS, vol. 1517, pp. 46–54. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92310-5_6

    Chapter  Google Scholar 

  21. Khanna, A., Pascual-Leone, A., Michel, C.M., Farzan, F.: Microstates in resting-state EEG: current status and future directions: Neurosci. Biobeh. Rev. 49, 105–113 (2015)

    Google Scholar 

  22. Strelets, V., et al.: Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations. Clin. Neurophysiol. 14, (11), 2043–2051 (2003)

    Google Scholar 

  23. Krukow, P., Jonak, K., Karpiński, R., Karakuła-Juchnowicz, H.: Abnormalities in hubs location and nodes centrality predict cognitive slowing and increased performance variability in first-episode schizophrenia patients. Sci. Rep. 9(1), 1–13 (2019)

    Article  Google Scholar 

  24. van den Heuvel, M.P., Mandl, R.C.W. Stam, C.J., Kahn, R.S., Hulshoff Pol, H.E.: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J. Neurosci. 30(47), 15915–15926 (2010)

    Google Scholar 

  25. Najjar, S., Pearlman, D.M.: Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophrenia Res. 161(1), 102–112 (2015)

    Google Scholar 

  26. Jalili, M., Knyazeva, M.G.: EEG-based functional networks in schizophrenia. Comput. Biol. Med. 41(12), 1178–1186 (2011)

    Google Scholar 

Download references

Acknowledgment

This study was supported by JSPS KAKENHI for a Grant-in-Aid for Scientific Research (C) (Grant No. 22K12183) (SN). This study was partially supported by the JST CREST (Grant No. JPMJCR17A4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiya Ebina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ebina, D., Nobukawa, S., Ikeda, T., Kikuchi, M., Takahashi, T. (2023). Dynamic Characteristics of Micro-state Transition Defined by Instantaneous Frequency in the Electroencephalography of Schizophrenia Patients. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13624. Springer, Cham. https://doi.org/10.1007/978-3-031-30108-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30108-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30107-0

  • Online ISBN: 978-3-031-30108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics