Skip to main content

A Hybrid Framework Based on Classifier Calibration for Imbalanced Aerial Scene Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13625))

Included in the following conference series:

Abstract

Aerial scene images are often imbalanced, where the most common classes as majorities and a few significant classes as minorities. We observe that the majority classes not only dominate the classification optimization but also generate deviations that affect the classifier weight matrices. In this work, we propose a hybrid framework based on classifier calibration, which mitigate the effect of the class imbalance problem in aerial scene recognition. In particular, the framework progressively incorporates feature representation and classifier learning branches, while building a memory bank of learned representations for approximating deviations derived from imbalanced data. We calibrate the classifier by excluding the deviations in the prediction of the testing stage. Extensive experiments are evaluated on class imbalanced aerial scene image datasets, which show the advantages of the proposed hybrid framework with classifier calibration outperforming state-of-the-art aerial scene recognition methods.

The study is supported partly by the National Natural Science Foundation of China under Grants 61971369, 52105126, 82172033, U19B2031, Science and Technology Key Project of Fujian Province(No. 2019HZ020009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bello, O.M., Aina, Y.A.: Satellite remote sensing as a tool in disaster management and sustainable development: towards a synergistic approach. Procedia Soc. Behav. Sci. 120, 365–373 (2014)

    Article  Google Scholar 

  2. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)

    Article  Google Scholar 

  6. Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large scale fine-grained categorization and domain-specific transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4109–4118 (2018)

    Google Scholar 

  7. Drumnond, C., Holte, R.: Class imbalance and cost sensitivity: why under-sampling beats oversampling. In: ICML-KDD 2003 Workshop: Learning from Imbalanced Datasets, vol. 3 (2003)

    Google Scholar 

  8. Fauvel, M., Chanussot, J., Benediktsson, J.A.: Decision fusion for the classification of urban remote sensing images. IEEE Trans. Geosci. Remote Sens. 44(10), 2828–2838 (2006)

    Article  Google Scholar 

  9. Guan, J., Liu, J., Sun, J., Feng, P., Shuai, T., Wang, W.: Meta metric learning for highly imbalanced aerial scene classification. In: ICASSP 2020, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4047–4051. IEEE (2020)

    Google Scholar 

  10. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  11. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  12. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Howard, A.G.: Some improvements on deep convolutional neural network based image classification. arXiv preprint arXiv:1312.5402 (2013)

  15. Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning deep representation for imbalanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5375–5384 (2016)

    Google Scholar 

  16. Huang, L., et al.: A two stage contrastive learning framework for imbalanced aerial scene recognition. In: ICASSP 2022, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3518–3522. IEEE (2022)

    Google Scholar 

  17. Huang, N., Yang, Y., Liu, J., Gu, X., Cai, H.: Single-image super-resolution for remote sensing data using deep residual-learning neural network. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing, ICONIP 2017. Lecture Notes in Computer Science(), vol. 10635, pp. 622–630. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0_64

    Chapter  Google Scholar 

  18. Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., Kalantidis, Y.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)

  19. Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing System, vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  21. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  22. Shen, L., Lin, Z., Huang, Q.: Relay backpropagation for effective learning of deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 467–482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_29

    Chapter  Google Scholar 

  23. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  24. Tang, K., Huang, J., Zhang, H.: Long-tailed classification by keeping the good and removing the bad momentum causal effect. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1513–1524 (2020)

    Google Scholar 

  25. Wang, P., Han, K., Wei, X.S., Zhang, L., Wang, L.: Contrastive learning based hybrid networks for long-tailed image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 943–952 (2021)

    Google Scholar 

  26. Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Weiss, M., Jacob, F., Duveiller, G.: Remote sensing for agricultural applications: a meta-review. Remote Sens. Environ. 236, 111402 (2020)

    Article  Google Scholar 

  28. Xia, G.S., et al.: AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3965–3981 (2017)

    Article  Google Scholar 

  29. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghao Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, Y. et al. (2023). A Hybrid Framework Based on Classifier Calibration for Imbalanced Aerial Scene Recognition. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics