Skip to main content

CCN: Pavement Crack Detection with Context Contrasted Net

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Abstract

Different from general object detection, there are three special characteristics in pavement crack detection: the tiny foreground proportion, the weak semanticity, and the local-whole similarity. To overcome the above challenges, we first construct Context Contrasted Network (CCN) to capture multi-scales features. By contrasting contextual features with local features, CCN contains the ability of local-whole discriminating. Then, we add an attention module in CCN to force the network to pay more attention to the foreground with small proportion instead of the background with large proportion, which improves the sensitivity of the model for pavement cracks. We achieve state-of-the-art results on two pavement crack datasets (i.e. CRACK500 and GRDDC), which demonstrates the effectiveness of our proposed method. Our source code will be opened later.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7533), 436–444 (2015)

    Article  Google Scholar 

  2. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Neural Information Processing Systems, vol. 28, pp. 91–99 (2015)

    Google Scholar 

  3. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR, pp. 779–788 (2016)

    Google Scholar 

  4. Lin, T. Y., Goyal, P., Girshick, R., He, K., Dollár, P. : Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  5. Tian, Z., Shen, C., Chen, H., He, T. : FCOS: fully convolutional one-stage object detection. In: ICCV, pp. 9626–9635 (2019)

    Google Scholar 

  6. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: CVPR, pp. 10781–10790 (2020)

    Google Scholar 

  7. Nguyen, N.T.H., Le, T.H., Perry, S., Nguyen, T.T.: Pavement crack detection using convolutional neural network. In: SoICT, pp. 251–256 (2018)

    Google Scholar 

  8. Gou, C., Peng, B., Li, T., Gao, Z.: Pavement crack detection based on the improved faster-RCNN. In: ISKE, pp. 962–967 (2019)

    Google Scholar 

  9. Yusof, N.A.M., et al.: Automated asphalt pavement crack detection and classification using deep convolution neural network. In: ICCSCE, pp. 215–220 (2019)

    Google Scholar 

  10. Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21(4), 1525–1535 (2019)

    Article  Google Scholar 

  11. Xiang, X., Zhang, Y., El Saddik, A.: Pavement crack detection network based on pyramid structure and attention mechanism. IET Image Process. 14(8), 1580–1586 (2020)

    Article  Google Scholar 

  12. Wang, J., Liu, F., Yang, W., Xu, G., Tao, Z.: Pavement crack detection using attention U-Net with multiple sources. In: Peng, Y., et al. (eds.) PRCV 2020. LNCS, vol. 12306, pp. 664–672. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60639-8_55

    Chapter  Google Scholar 

  13. Zhang, K., Zhang, Y., Cheng, H.D.: Crack-GAN: pavement crack detection using partially accurate ground truths based on generative adversarial learning. IEEE Trans. Intell. Transp. Syst. 22(2), 1306–1319 (2020)

    Article  Google Scholar 

  14. Cheng, W., Zhou, Y.: Automatic pavement crack detection based on hierarchical feature augmentation. In: ICAIIS, pp. 1–7 (2021)

    Google Scholar 

  15. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  17. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: CVPR, pp. 821–830 (2019)

    Google Scholar 

  18. Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: CVPR, pp. 936–944 (2017)

    Google Scholar 

  19. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018)

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  22. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML, pp. 6105–6114 (2019)

    Google Scholar 

  23. Li, Z., Liu, Y., Li, B., Hu, W., Miao, Y., Zhang, H.: DSIC: dynamic sample-individualized connector for multi-scale object detection. In: ICME (2021)

    Google Scholar 

  24. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR, pp. 8759–8768 (2018)

    Google Scholar 

  25. Ghiasi, G., Lin, T.Y., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: CVPR, pp. 7036–7045 (2019)

    Google Scholar 

  26. Arya, D., Maeda, H., Ghosh, S.K., et al.: Global road damage detection: state-of-the-art solutions. In: IEEE BigData, pp. 5533–5539 (2020)

    Google Scholar 

  27. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  28. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  29. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  30. Peng, C., et al.: MegDet: a large mini-batch object detector. In: CVPR, pp. 6181–6189 (2018)

    Google Scholar 

  31. Chen, K., Wang, J., Pang, J., et al.: MMDetection: open MMLab detection toolbox and benchmark. CoRR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihuan Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y., Zhang, S., Ruan, C. (2023). CCN: Pavement Crack Detection with Context Contrasted Net. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics