Skip to main content

A New Class of Trapdoor Verifiable Delay Functions

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13877))

Included in the following conference series:

  • 534 Accesses

Abstract

A verifiable delay function (VDF) is a function whose evaluation involves lengthy sequential operations, yet its outcome is publicly verifiable. As an extension, a trapdoor-VDF is a VDF with a shortcut that speeds up the evaluation process. This paper presents a new class of trapdoor-VDFs featuring a large ensemble of trapdoors for each instantiation of the function. This way, a client can randomly choose a private trapdoor from the ensemble, thereby using it to encapsulate a secret to the future as a unique puzzle. To solve the puzzle, the server, which does not know the trapdoor, requires a prescribed number of sequential steps to evaluate the function. Any client can efficiently verify the correctness of the server’s evaluation with zero knowledge of the trapdoor being used. We present an approach for constructing the proposed class of trapdoor-VDFs based on bilinear pairings and a long walk on supersingular isogeny graphs. Finally, we examine the security of our construction under trapdoor-VDF security notions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The subgroup \( {G}_{1}^{ E_{} } \) is defined as \( {G}_{1}^{ E_{} } := E_{} [N]\cap \textsf {ker} (\pi +[1])\), whereas, \( {G}_{2}^{ E_{} } := E_{} [N]\cap \textsf {ker} (\pi -[1])\).

References

  1. Abusalah, H., Kamath, C., Klein, K., Pietrzak, K., Walter, M.: Reversible proofs of sequential work. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 277–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_10

    Chapter  Google Scholar 

  2. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: CRAFT: composable randomness and almost fairness from time. IACR Cryptology ePrint Archive, p. 784 (2020)

    Google Scholar 

  3. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: a foundation of time-lock puzzles in UC. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 429–459. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_15

    Chapter  MATH  Google Scholar 

  4. Bellare, M., Halevi, S., Sahai, A., Vadhan, S.P.: Many-to-one trapdoor functions and their relation to public-key cryptosystems. IACR Cryptol., p. 19 (1998)

    Google Scholar 

  5. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_5

    Chapter  Google Scholar 

  6. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25

    Chapter  Google Scholar 

  7. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J. ACM 48(4), 702–722 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_30

    Chapter  Google Scholar 

  9. Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 302–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_11

    Chapter  Google Scholar 

  10. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary version). Cryptology ePrint Archive, Paper 2022/975 (2022)

    Google Scholar 

  11. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

    Chapter  Google Scholar 

  12. Chavez-Saab, J., Rodríguez-Henríquez, F., Tibouchi, M.: Verifiable isogeny walks: towards an isogeny-based postquantum VDF. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 441–460. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4_21

    Chapter  Google Scholar 

  13. Chvojka, P., Jager, T., Slamanig, D., Striecks, C.: Versatile and sustainable timed-release encryption and sequential time-lock puzzles (extended abstract). In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 64–85. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88428-4_4

    Chapter  Google Scholar 

  14. Cline, D., Dryja, T., Narula, N.: Clockwork: an exchange protocol for proofs of non front-running (2020). https://dci.mit.edu/clockwork, the Stanford Blockchain Conference

  15. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_15

    Chapter  Google Scholar 

  16. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic curves over \(\mathbb{F}_{p}\). Des. Codes Cryptogr. 78(2), 425–440 (2016)

    Google Scholar 

  17. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_5

    Chapter  Google Scholar 

  18. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from supersingular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_10

    Chapter  Google Scholar 

  19. Fouotsa, T.B.: SIDH with masked torsion point images. Cryptology ePrint Archive, Paper 2022/1054 (2022). https://eprint.iacr.org/2022/1054

  20. Freitag, C., Komargodski, I., Pass, R., Sirkin, N.: Non-malleable time-lock puzzles and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 447–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_15

    Chapter  Google Scholar 

  21. Kohel, D.R.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis, University of California, Berkeley (1996)

    Google Scholar 

  22. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. Cryptology ePrint Archive, Report 2015/366 (2015)

    Google Scholar 

  23. Leonardi, C.: A note on the ending elliptic curve in SIDH. IACR Cryptology ePrint Archive 2020, 262 (2020). https://eprint.iacr.org/2020/262

  24. Loe, A.F., Medley, L., O’Connell, C., Quaglia, E.A.: A practical verifiable delay function and delay encryption scheme. IACR Cryptology ePrint Archive, p. 1293 (2021)

    Google Scholar 

  25. Loe, A.F., Medley, L., O’Connell, C., Quaglia, E.A.: Tide: A novel approach to constructing timed-release encryption. In: 27th Australasian Conference on Information Security and Privacy, 28–30 November 2022, Wollongong, Australia (2022)

    Google Scholar 

  26. Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of sequential work. In: ITCS, pp. 373–388. ACM (2013)

    Google Scholar 

  27. Moriya, T.: Masked-degree SIDH. Cryptology ePrint Archive, Paper 2022/1019 (2022). https://eprint.iacr.org/2022/1019

  28. Pietrzak, K.: Simple verifiable delay functions. In: ITCS. LIPIcs, vol. 124, pp. 60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  29. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto (1996)

    Google Scholar 

  30. Rotem, L.: Simple and efficient batch verification techniques for verifiable delay functions. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 382–414. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_13

    Chapter  Google Scholar 

  31. Shani, B.: A note on isogeny-based hybrid verifiable delay functions. IACR Cryptology ePrint Archive, p. 205 (2019)

    Google Scholar 

  32. Silverman, J.H.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 106. Springer, New York (1986). https://doi.org/10.1007/978-1-4757-1920-8

  33. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. A 273, 305–347 (1971)

    Google Scholar 

  34. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Zawia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zawia, A., Hasan, M.A. (2023). A New Class of Trapdoor Verifiable Delay Functions. In: Jourdan, GV., Mounier, L., Adams, C., Sèdes, F., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2022. Lecture Notes in Computer Science, vol 13877. Springer, Cham. https://doi.org/10.1007/978-3-031-30122-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30122-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30121-6

  • Online ISBN: 978-3-031-30122-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics