Abstract
Exploratory landscape analysis (ELA) in single-objective black-box optimization relies on a comprehensive and large set of numerical features characterizing problem instances. Those foster problem understanding and serve as basis for constructing automated algorithm selection models choosing the best suited algorithm for a problem at hand based on the aforementioned features computed prior to optimization. This work specifically points to the sensitivity of a substantial proportion of these features to absolute objective values, i.e., we observe a lack of shift and scale invariance. We show that this unfortunately induces bias within automated algorithm selection models, an overfitting to specific benchmark problem sets used for training and thereby hinders generalization capabilities to unseen problems. We tackle these issues by presenting an appropriate objective normalization to be used prior to ELA feature computation and empirically illustrate the respective effectiveness focusing on the BBOB benchmark set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bossek, J., Doerr, C., Kerschke, P.: Initial design strategies and their effects on sequential model-based optimization: an exploratory case study based on BBOB. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 778–786. GECCO ’20, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3377930.3390155
Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. Optim. Methods Softw. 36, 114–144 (2021). https://doi.org/10.1080/10556788.2020.1808977
Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2010: experimental setup. Research Report RR-7215, INRIA (2010). https://hal.inria.fr/inria-00462481
Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Tech. Rep. RR-6829, INRIA (2009). https://hal.inria.fr/inria-00362633/document
Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., Kerschke, P.: A study on the effects of normalized TSP features for automated algorithm selection. Theor. Comput. Sci. 940, 123–145 (2023). https://doi.org/10.1016/j.tcs.2022.10.019
Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019). https://doi.org/10.1162/evco_a_00242
Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures by means of exploratory landscape analysis. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 265–272. GECCO ’15, Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2739480.2754642
Kerschke, P., Trautmann, H.: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning. Evol. Comput. 27(1), 99–127 (2019). https://doi.org/10.1162/evco_a_00236
Kerschke, P., Trautmann, H.: Comprehensive feature-based landscape analysis of continuous and constrained optimization problems using the r-package flacco. In: Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M. (eds.) Applications in Statistical Computing. SCDAKO, pp. 93–123. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25147-5_7
Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. p. 477–484. GECCO ’06, Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1143997.1144085
Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. p. 829–836. GECCO ’11, Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/2001576.2001690
Muñoz Acosta, M.A., Kirley, M., Halgamuge, S.K.: Exploratory landscape analysis of continuous space optimization problems using information content. IEEE Trans. Evol. Comput. (TEVC) 19(1), 74–87 (2015). https://doi.org/10.1109/TEVC.2014.2302006
Muñoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-box continuous optimization problems: a survey on methods and challenges. Inf. Sci. 317, 224–245 (2015). https://doi.org/10.1016/j.ins.2015.05.010
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Prager, R.P.: pflacco: The R-Package flacco in Native Python Code (2022). https://github.com/Reiyan/pflacco, Python Package v1.1.0
Prager, R.P., Seiler, M.V., Trautmann, H., Kerschke, P.: Automated algorithm selection in single-objective continuous optimization: a comparative study of deep learning and landscape analysis methods. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) Parallel Problem Solving from Nature - PPSN XVII, pp. 3–17. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-14714-2_1
Renau, Q., Doerr, C., Dreo, J., Doerr, B.: Exploratory landscape analysis is strongly sensitive to the sampling strategy. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 139–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_10
Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Expressiveness and robustness of landscape features. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. p. 2048–2051. GECCO ’19, Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3319619.3326913
Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Towards explainable exploratory landscape analysis: extreme feature selection for classifying BBOB functions. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 17–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_2
Škvorc, U., Eftimov, T., Korošec, P.: Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis. Appl. Soft Comput. 90, 106138 (2020). https://doi.org/10.1016/j.asoc.2020.106138
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Prager, R.P., Trautmann, H. (2023). Nullifying the Inherent Bias of Non-invariant Exploratory Landscape Analysis Features. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-30229-9_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30228-2
Online ISBN: 978-3-031-30229-9
eBook Packages: Computer ScienceComputer Science (R0)