Skip to main content

An Intelligent Optimised Estimation of the Hydraulic Jump Roller Length

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2023)

Abstract

In this paper, we address a problem in the field of hydraulics which is also relevant in terms of sustainability. Hydraulic jump is a physical phenomenon that occurs both for natural and man-made reasons. Its importance relies on the exploitation of the intrinsic energy dissipation characteristics and on the other hand the danger that might produce on bridges and river structures as a consequence of the interaction with the large vortex structures that are generated. In the present work, we try to address the problem of estimating the hydraulic jump roller length, whose evaluation is inherently affected by empirical errors related to its dissipative nature. The problem is approached using a regression model and exploiting a dataset of observations. Regression is performed by minimising the loss function using ten different black-box optimisers. In particular, we selected some of the most used metaheuristics, such as Evolution Strategies, Particle Swarm Optimisation, Differential Evolution and others. Furthermore, an experimental analysis has been conducted to validate the proposed approach and compare the effectiveness of the metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The data set is available with the supplementary data at https://doi.org/10.5281/zenodo.7595510.

References

  1. Agresta, A., Baioletti, M., Biscarini, C., Caraffini, F., Milani, A., Santucci, V.: Using optimisation meta-heuristics for the roughness estimation problem in river flow analysis. Appl. Sci. 11(22), 10575 (2021)

    Article  Google Scholar 

  2. Agresta, A., Baioletti, M., Biscarini, C., Milani, A., Santucci, V.: Evolutionary Algorithms for Roughness Coefficient Estimation in River Flow Analyses. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 795–811. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_50

    Chapter  Google Scholar 

  3. Andersson, J., Oliveira, D.R., Yeginbayeva, I., Leer-Andersen, M., Bensow, R.E.: Review and comparison of methods to model ship hull roughness. Appl. Ocean Res. 99, 102119 (2020)

    Article  Google Scholar 

  4. Bélanger, J.: Essay on the numerical solution of some problems relative to steady flow of water. Paris, France, Carilian-Goeury (1828)

    Google Scholar 

  5. Carollo, F., Ferro, V.: Contributo allo studio della lunghezza del risalto libero su fondo liscio e scabro. Rivista di Ingegneria Agraria 35(4), 13–20 (2004). (in Italian)

    Google Scholar 

  6. Carollo, F., Ferro, V.: Determinazione delle altezze coniugate del risalto libero su fondo liscio e scabro. Rivista di Ingegneria Agraria 35(4), 1–11 (2004)

    Google Scholar 

  7. Carollo, F.G., Ferro, V., Pampalone, V.: Hydraulic jumps on rough beds. J. Hydraul. Eng. 133(9), 989–999 (2007)

    Article  Google Scholar 

  8. Cauwet, M.L., et al.: Fully parallel hyperparameter search: reshaped space-filling. In: International Conference on Machine Learning, pp. 1338–1348. PMLR (2020)

    Google Scholar 

  9. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comp. 1(1), 3–18 (2011)

    Article  Google Scholar 

  10. Di Francesco, S., Biscarini, C., Manciola, P.: Characterization of a flood event through a sediment analysis: The tescio river case study. Water 8(7), 308 (2016)

    Article  Google Scholar 

  11. Ead, S.A., Rajaratnam, N.: Hydraulic jumps on corrugated beds. J. Hydraul. Eng. 128(7), 656–663 (2002)

    Article  Google Scholar 

  12. Gao, F., Han, L.: Implementing the nelder-mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 51(1), 259–277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gul, E., Dursun, O.F., Mohammadian, A.: Experimental study and modeling of hydraulic jump for a suddenly expanding stilling basin using different hybrid algorithms. Water Supply 21(7), 3752–3771 (2021)

    Article  Google Scholar 

  14. Hager, W.H., Bremen, R., Kawagoshi, N.: Classical hydraulic jump: length of roller. J. Hydraul. Res. 28(5), 591–608 (1990)

    Article  Google Scholar 

  15. Hager, W.: Energy Dissipators and Hydraulic Jumps, vol. 8. Kluwer Academic Publication, Dordrecht, The Netherlands (1992)

    Book  Google Scholar 

  16. Hager, W.H., Bremen, R.: Classical hydraulic jump: sequent depths. J. Hydraul. Res. 27(5), 565–585 (1989)

    Article  Google Scholar 

  17. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  18. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric statistical methods, vol. 751. John Wiley & Sons (2013)

    Google Scholar 

  19. Hughes, W.C., Flack, J.E.: Hydraulic jump properties over a rough bed. J. Hydraul. Eng. 110(12), 1755–1771 (1984)

    Article  Google Scholar 

  20. Karbasi, M.: Estimation of classical hydraulic jump length using teaching-learning based optimization algorithm. J. Mater. Environ. Sci. 7, 2947–2954 (2016)

    Google Scholar 

  21. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  22. Kim, J.H.: Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap. Comp. Stat. Data Anal. 53(11), 3735–3745 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rajaratnam, N.: The hydraulic jump as a well jet. J. Hydraul. Div. 91(5), 107–132 (1965). https://doi.org/10.1061/JYCEAJ.0001299

    Article  Google Scholar 

  24. Rao, N.S.G.: Ramaprasad: application of momentum equation in the hydraulic jump. La Houille Blanche 52(4), 451–453 (1966)

    Article  Google Scholar 

  25. Rapin, J., Teytaud, O.: Nevergrad - A gradient-free optimization platform. https://GitHub.com/FacebookResearch/Nevergrad (2018)

  26. Rapin, J., Bennet, P., Centeno, E., Haziza, D., Moreau, A., Teytaud, O.: Open source evolutionary structured optimization. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1599–1607 (2020)

    Google Scholar 

  27. Safranez, K.: Wechselsprung und die energievernichtung des wassers. Bauingenieur 8(49), 898–905 (1927)

    Google Scholar 

  28. Santucci, V., Baioletti, M., Di Bari, G.: An improved memetic algebraic differential evolution for solving the multidimensional two-way number partitioning problem. Expert Syst. Appl. 178, 114938 (2021)

    Article  Google Scholar 

  29. Santucci, V., Baioletti, M., Milani, A.: An algebraic differential evolution for the linear ordering problem. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1479–1480 (2015)

    Google Scholar 

  30. Santucci, V., Milani, A.: Particle swarm optimization in the EDAs framework. Soft Comput. Ind. Appl. 96, 87–96 (2011)

    Google Scholar 

  31. Smetana, J.: Studi sperimentali sul salto di Bidone libero e annegato. Energ. Elettr. 24(10), 829–835 (1937)

    Google Scholar 

  32. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yao, X., Liu, Y.: Fast evolution strategies. In: Angeline, P.J., Reynolds, R.G., McDonnell, J.R., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 149–161. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0014808

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the following research grants from “Università per Stranieri di Perugia”: (i) “Finanziamento Dipartimentale alla Ricerca FDR 2022”, (ii) “Artificial Intelligence for Education, Social and Human Sciences”, (iii) “Progettazione e sviluppo di strumenti digitali per la formazione a distanza”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentino Santucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agresta, A., Biscarini, C., Caraffini, F., Santucci, V. (2023). An Intelligent Optimised Estimation of the Hydraulic Jump Roller Length. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30229-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30228-2

  • Online ISBN: 978-3-031-30229-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics