Skip to main content

Multi-agent vs Classic System of an Electricity Mix Production Optimization

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2023)

Abstract

Aiming to respond to a real-world complex problem, optimizing an electricity mix production, MixSimulator has been developed. This paper compares two approaches: the classic method and the multi-agent system based method (MAS). Each agent performs various functions such as producing electricity and updating the availability (power plants), predicting the oncoming demand, and handling all the information to provide optimized planning of the production. It takes into account technological, economic, and environmental constraints. Evolutionary algorithms (DE, (1+1)-ES and NgOpt) from the Nevergrad library are used to generate solutions. The results show that the multi-agent system based method outperforms the classic one thanks to its ability to react to events and provide dynamic schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andriamalala, S.R., Andriamizakason, T.A., Rasoanaivo, A.: MixSimulator - an electricity mix simulator and optimization (2020). https://GitHub.com/Foloso/MixSimulator

  2. Bonin, B., Safa, H., Laureau, A., Merle-Lucotte, E., Miss, J., Richet, Y.: MIXOPTIM: a tool for the evaluation and the optimization of the electricity mix in a territory. Eur. Phys. J. Plus 129(9), 198 (2014). https://doi.org/10.1140/epjp/i2014-14198-7, https://hal-cea.archives-ouvertes.fr/cea-01089278

  3. Chen, Y.M., Wang, S.C.: An agent-based evolutionary strategic negotiation for project dynamic scheduling. Int. J. Adv. Manuf. Technol. 35(3), 333–348 (2007). https://doi.org/10.1007/s00170-006-0830-x

  4. Davidsson, P., Persson, J.A., Holmgren, J.: On the integration of agent-based and mathematical optimization techniques. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 1–10. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72830-6_1

    Chapter  Google Scholar 

  5. Eddy, Y.F., Gooi, H.B., Chen, S.X.: Multi-agent system for distributed management of microgrids. IEEE Trans. Power Syst. 30(1), 24–34 (2014)

    Article  Google Scholar 

  6. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 2nd edn. McGraw-Hill Higher Education, New York (1997)

    Google Scholar 

  7. Maturana, F., Shen, W., Hong, M., Norrie, D.: Multi-agent architectures for concurrent design and manufacturing. Environments 1(2), 3 (1997)

    Google Scholar 

  8. McArthur, S., et al.: Multi-agent systems for power engineering applications - part ii: technologies, standards and tools for building multi-agent systems. IEEE Trans. Power Syst. 22, 1753–1759 (2007). https://doi.org/10.1109/TPWRS.2007.908472

  9. Meunier, L., et al.: Black-box optimization revisited: improving algorithm selection wizards through massive benchmarking. CoRR abs/2010.04542 (2020). https://arxiv.org/abs/2010.04542

  10. Meunier, L., et al.: Black-box optimization revisited: improving algorithm selection wizards through massive benchmarking. arxiv:2010.04542 (2020)

  11. Moradi, M.H., Razini, S., Mahdi Hosseinian, S.: State of art of multiagent systems in power engineering: a review. Renew. Sustain. Energy Rev. 58, 814–824 (2016). https://doi.org/10.1016/j.rser.2015.12.339, https://www.sciencedirect.com/science/article/pii/S1364032115017220

  12. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems. J. Sched. 12(4), 417–431 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rapin, J., Teytaud, O.: Nevergrad - a gradient-free optimization platform (2018). https://GitHub.com/FacebookResearch/Nevergrad

  14. Rechenberg, I.: Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien des Biologischen Evolution. Fromman-Holzboog Verlag (1973)

    Google Scholar 

  15. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56(3), 1247–1293 (2013). https://doi.org/10.1007/s10898-012-9951-y

  16. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Taylor, S., Letham, B.: Forecasting at scale. Peerj Preprints 5, e3190v2 (2017)

    Google Scholar 

  18. Wörner, J., Wörn, H.: Benchmarking of multiagent systems in a production planning and control environment. In: Kirn, S., Herzog, O., Lockemann, P., Spaniol, O. (eds.) Multiagent Engineering. International Handbooks on Information Systems, pp. 115–133. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32062-8_7

  19. Yang, Z., Tang, K., Yao, X.: Differential evolution for high-dimensional function optimization. In: 2007 IEEE Congress on Evolutionary Computation, pp. 3523–3530 (2007). https://doi.org/10.1109/CEC.2007.4424929

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solofohanitra Rahamefy Andriamalala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andriamalala, S.R., Andriamizakason, T.A., Rasoanaivo, A. (2023). Multi-agent vs Classic System of an Electricity Mix Production Optimization. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30229-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30228-2

  • Online ISBN: 978-3-031-30229-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics