Skip to main content

A Multi-brain Approach for Multiple Tasks in Evolvable Robots

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2023)

Abstract

We investigate the joint evolution of morphologies (bodies) and controllers (brains) of modular robots for multiple tasks. In particular, we want to validate an approach based on three premises. First, the controller is a combination of a user-defined decision tree and evolvable/learnable modules, one module for each given task. Second, morphologies and controllers are evolved jointly for each task simultaneously by a multi-objective evolutionary algorithm. Third, after terminating the evolutionary process, the brain of the users’ favorite morphology is optimized by a learning algorithm applied to the task-specific controller modules independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    (see Revolve https://github.com/ci-group/revolve).

  2. 2.

    (see MultiNeat https://github.com/MultiNEAT/).

  3. 3.

    (see shorturl.me/JtySjtH).

References

  1. Auerbach, J., et al.: Robogen: robot generation through artificial evolution. In: ALIFE 14: The Fourteenth International Conference on the Synthesis and Simulation of Living Systems, pp. 136–138 (2014)

    Google Scholar 

  2. Beer, R.D.: The dynamics of brain–body–environment systems. In: Handbook of Cognitive Science, pp. 99–120. Elsevier (2008)

    Google Scholar 

  3. Carlo, M.D., Ferrante, E., Ellers, J., Meynen, G., Eiben, A.E.: The impact of different tasks on evolved robot morphologies. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM, July 2021

    Google Scholar 

  4. Carlo, M.D., Zeeuwe, D., Ferrante, E., Meynen, G., Ellers, J., Eiben, A.: Robotic task affects the resulting morphology and behaviour in evolutionary robotics. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, December 2020

    Google Scholar 

  5. Cheney, N., Bongard, J., Sunspiral, V., Lipson, H.: On the difficulty of co-optimizing morphology and control in evolved virtual creatures. IN: Proceedings of the Artificial Life Conference 2016, July 2016

    Google Scholar 

  6. Cheney, N., Bongard, J., SunSpiral, V., Lipson, H.: Scalable co-optimization of morphology and control in embodied machines. J. Roy. Soc. Interface 15 (2018)

    Google Scholar 

  7. Coello, C.C.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)

    Article  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Eiben, A.E., Hart, E.: If it evolves it needs to learn. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. ACM, July 2020

    Google Scholar 

  10. Eiben, A., et al.: The triangle of life: evolving robots in real-time and real-space. In: Lio, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Proceedings of the 12th European Conference on the Synthesis and Simulation of Living Systems (ECAL 2013), pp. 1056–1063. MIT Press (2013)

    Google Scholar 

  11. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B. and Khatib, O. (ed.) Handbook of Robotics, 1st edn, pp. 1423–1451. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_62

  12. Haasdijk, E., Rusu, A.A., Eiben, A.E.: HyperNEAT for locomotion control in modular robots. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 169–180. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15323-5_15

    Chapter  Google Scholar 

  13. Hupkes, E., Jelisavcic, M., Eiben, A.E.: Revolve: a versatile simulator for online robot evolution. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 687–702. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_46

    Chapter  Google Scholar 

  14. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  15. Lan, G., van Hooft, M., Carlo, M.D., Tomczak, J.M., Eiben, A.: Learning locomotion skills in evolvable robots. Neurocomputing 452, 294–306 (2021)

    Article  Google Scholar 

  16. Lan, G., Jelisavcic, M., Roijers, D.M., Haasdijk, E., Eiben, A.E.: Directed locomotion for modular robots with evolvable morphologies. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 476–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_38

    Chapter  Google Scholar 

  17. Lessin, D., Fussell, D., Miikkulainen, R.: Adopting morphology to multiple tasks in evolved virtual creatures. In: Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems. The MIT Press, July 2014

    Google Scholar 

  18. Lessin, D., Fussell, D., Miikkulainen, R.: Open-ended behavioral complexity for evolved virtual creatures. In: Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, July 2013

    Google Scholar 

  19. Matos, V., Santos, C.P.: Towards goal-directed biped locomotion: combining CPGs and motion primitives. Robot. Auton. Syst. 62(12), 1669–1690 (2014)

    Article  Google Scholar 

  20. Moshaiov, A., Abramovich, O.: Is MO-CMA-ES superior to NSGA-II for the evolution of multi-objective neuro-controllers? In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, July 2014

    Google Scholar 

  21. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  22. Nygaard, T.F., Samuelsen, E., Glette, K.: Overcoming initial convergence in multi-objective evolution of robot control and morphology using a two-phase approach. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 825–836. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_53

    Chapter  Google Scholar 

  23. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  24. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  25. Trianni, V., López-Ibáñez, M.: Advantages of task-specific multi-objective optimisation in evolutionary robotics. PLoS ONE 10(8), e0136406 (2015)

    Article  Google Scholar 

  26. Weel, B., Crosato, E., Heinerman, J., Haasdijk, E., Eiben, A.E.: A Robotic Ecosystem with Evolvable Minds and Bodies. In: 2014 IEEE International Conference on Evolvable Systems, pp. 165–172. IEEE Press, Piscataway (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ege de Bruin , Julian Hatzky or Babak Hosseinkhani Kargar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Bruin, E., Hatzky, J., Hosseinkhani Kargar, B., Eiben, A.E. (2023). A Multi-brain Approach for Multiple Tasks in Evolvable Robots. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30229-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30228-2

  • Online ISBN: 978-3-031-30229-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics