Skip to main content

Contextual Bandits Algorithms for Reconfigurable Hardware Accelerators

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2022)

Abstract

Reconfigurable processing cores for IoT and edge computing applications are emerging topics to calibrate costs, energy consumption and area occupation with performance and reliability on Commercial Off the Shelf (COTS) devices. This work analyzes how to take advantage of Machine Learning to potentially automate the reconfiguration process of a hardware accelerator inside the Klessydra Vector Coprocessor Unit (VCU), choosing the best configuration according to the workload. The problem is modeled with a contextual bandits approach using the Linear UCB algorithms and validated with offline Python simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 661–670 (2010)

    Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)

    Article  MATH  Google Scholar 

  3. Durand, A., Achilleos, C., Iacovides, D., Strati, K., Mitsis, G.D., Pineau, J.: Contextual bandits for adapting treatment in a mouse model of de novo carcinogenesis. In: Machine Learning for Healthcare Conference, pp. 67–82. PMLR (2018)

    Google Scholar 

  4. Amat, F., Chandrashekar, A., Jebara, T., Basilico, J.: Artwork personalization at netflix. In: Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18, New York, NY, USA, pp. 487–488. Association for Computing Machinery (2018)

    Google Scholar 

  5. Cheikh, A., Sordillo, S., Mastrandrea, A., Menichelli, F., Olivieri, M.: Efficient mathematical accelerator design coupled with an interleaved multi-threading RISC-V microprocessor. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2019. LNEE, vol. 627, pp. 529–539. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37277-4_62

    Chapter  Google Scholar 

  6. Sordillo, S., Cheikh, A., Mastrandrea, A., Menichelli, F., Olivieri, M.: Customizable vector acceleration in extreme-edge computing: a RISC-V software/hardware architecture study on VGG-16 implementation. Electronics 10(4), 518 (2021)

    Article  Google Scholar 

  7. Cheikh, A., Sordillo, S., Mastrandrea, A., Menichelli, F., Scotti, G., Olivieri, M.: Klessydra-t: designing vector coprocessors for multithreaded edge-computing cores. IEEE Micro 41(2), 64–71 (2021)

    Article  Google Scholar 

  8. Olivieri, M., Cheikh, A., Cerutti, G., Mastrandrea, A., Menichelli, F.: Investigation on the optimal pipeline organization in RISC-V multi-threaded soft processor cores. In: 2017 New Generation of CAS (NGCAS), pp. 45–48. IEEE (2017)

    Google Scholar 

  9. Li, L., Chu, W., Langford, J., Wang, X.: Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 297–306 (2011)

    Google Scholar 

  10. Lattimore, T., Szepesvári, C.: Bandit Algorithms. Cambridge University Press, Cambridge (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Angioli , Marcello Barbirotta , Abdallah Cheikh , Antonio Mastrandrea , Francesco Menichelli , Saeid Jamili or Mauro Olivieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angioli, M. et al. (2023). Contextual Bandits Algorithms for Reconfigurable Hardware Accelerators. In: Berta, R., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2022. Lecture Notes in Electrical Engineering, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-031-30333-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30333-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30332-6

  • Online ISBN: 978-3-031-30333-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics