Abstract
Reconfigurable processing cores for IoT and edge computing applications are emerging topics to calibrate costs, energy consumption and area occupation with performance and reliability on Commercial Off the Shelf (COTS) devices. This work analyzes how to take advantage of Machine Learning to potentially automate the reconfiguration process of a hardware accelerator inside the Klessydra Vector Coprocessor Unit (VCU), choosing the best configuration according to the workload. The problem is modeled with a contextual bandits approach using the Linear UCB algorithms and validated with offline Python simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 661–670 (2010)
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)
Durand, A., Achilleos, C., Iacovides, D., Strati, K., Mitsis, G.D., Pineau, J.: Contextual bandits for adapting treatment in a mouse model of de novo carcinogenesis. In: Machine Learning for Healthcare Conference, pp. 67–82. PMLR (2018)
Amat, F., Chandrashekar, A., Jebara, T., Basilico, J.: Artwork personalization at netflix. In: Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18, New York, NY, USA, pp. 487–488. Association for Computing Machinery (2018)
Cheikh, A., Sordillo, S., Mastrandrea, A., Menichelli, F., Olivieri, M.: Efficient mathematical accelerator design coupled with an interleaved multi-threading RISC-V microprocessor. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2019. LNEE, vol. 627, pp. 529–539. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37277-4_62
Sordillo, S., Cheikh, A., Mastrandrea, A., Menichelli, F., Olivieri, M.: Customizable vector acceleration in extreme-edge computing: a RISC-V software/hardware architecture study on VGG-16 implementation. Electronics 10(4), 518 (2021)
Cheikh, A., Sordillo, S., Mastrandrea, A., Menichelli, F., Scotti, G., Olivieri, M.: Klessydra-t: designing vector coprocessors for multithreaded edge-computing cores. IEEE Micro 41(2), 64–71 (2021)
Olivieri, M., Cheikh, A., Cerutti, G., Mastrandrea, A., Menichelli, F.: Investigation on the optimal pipeline organization in RISC-V multi-threaded soft processor cores. In: 2017 New Generation of CAS (NGCAS), pp. 45–48. IEEE (2017)
Li, L., Chu, W., Langford, J., Wang, X.: Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 297–306 (2011)
Lattimore, T., Szepesvári, C.: Bandit Algorithms. Cambridge University Press, Cambridge (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Angioli, M. et al. (2023). Contextual Bandits Algorithms for Reconfigurable Hardware Accelerators. In: Berta, R., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2022. Lecture Notes in Electrical Engineering, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-031-30333-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-30333-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30332-6
Online ISBN: 978-3-031-30333-3
eBook Packages: EngineeringEngineering (R0)