Skip to main content

Developing a Toolchain for Synthetic Driving Scenario Datasets

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2022)

Abstract

Formalization of driving scenarios is key to define the operational design domain (ODD) of Automated Driving Functions (ADF). Training machine learning (ML) requires huge datasets, that are costly to produce. We propose a toolchain to generate driving scenario video-clip datasets based on the state-of-the-art CarLA driving simulator engine. Scenarios are randomically generated based on a set of parametric features, that are specified by the user. The variability includes both environmental and scenario-specific aspects. As an initial experiment, we have generated a dataset with 200 samples for each one of the 6 implemented classes. The tool is able to achieve a generation rate of about 130 scenarios (7 s. long each) per hour. The tool includes a verification module, which checks the successful completion of each sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber, H., et al.: A framework for definition of logical scenarios for safety assurance of automated driving. Traffic Inj. Prev. 20, S65–S70 (2019). https://doi.org/10.1080/15389588.2019.1630827

    Article  Google Scholar 

  2. ASAM OpenSCENARIO. https://www.asam.net/standards/detail/openscenario/. Accessed 21 July 2022

  3. Elallid, B.B., Benamar, N., Hafid, A.S., Rachidi, T., Mrani, N.: A comprehensive survey on the application of deep and reinforcement learning approaches in autonomous driving. J. King Saud Univ. – Comput. Inf. Sci. (2022). https://doi.org/10.1016/j.jksuci.2022.03.013

    Article  Google Scholar 

  4. Korbmacher, R., Tordeux, A.: Review of pedestrian trajectory prediction methods: comparing deep learning and knowledge-based approaches (2021). http://arxiv.org/abs/2111.06740, https://doi.org/10.48550/arXiv.2111.06740

  5. Kiran, B.R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A.A.A., Yogamani, S., Pérez, P.: Deep reinforcement learning for autonomous driving: a survey (2021). http://arxiv.org/abs/2002.00444

  6. Izquierdo, R., Quintanar, A., Parra, I., Fernández-Llorca, D., Sotelo, M.A.: The PREVENTION dataset: a novel benchmark for PREdiction of VEhicles iNTentIONs. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3114–3121 (2019). https://doi.org/10.1109/ITSC.2019.8917433

  7. Bellotti, F., et al.: Managing big data for addressing research questions in a collaborative project on automated driving impact assessment. Sensors. 20, 6773 (2020). https://doi.org/10.3390/s20236773

    Article  Google Scholar 

  8. Cirimele, V., et al.: The fabric ICT platform for managing wireless dynamic charging road lanes. IEEE Trans. Veh. Technol. 69, 2501–2512 (2020). https://doi.org/10.1109/TVT.2020.2968211

    Article  Google Scholar 

  9. Team, C.: CARLA. http://CarLA.org/. Accessed 21 July 2022

  10. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator (2017). http://arxiv.org/abs/1711.03938, https://doi.org/10.48550/arXiv.1711.03938

  11. CARLA: Car Learning to Act — An Inside Out – ScienceDirect. https://www.sciencedirect.com/science/article/pii/S1877050921025552. Accessed 21 July 2022

  12. Motta, J., et al.: Developing a synthetic dataset for driving scenarios. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2021. LNEE, vol. 866, pp. 310–316. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95498-7_43

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Cossu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cossu, M., Berta, R., Capello, A., De Gloria, A., Lazzaroni, L., Bellotti, F. (2023). Developing a Toolchain for Synthetic Driving Scenario Datasets. In: Berta, R., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2022. Lecture Notes in Electrical Engineering, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-031-30333-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30333-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30332-6

  • Online ISBN: 978-3-031-30333-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics