Skip to main content

Automatic IP Core Generator for FPGA-Based Q-Learning Hardware Accelerators

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2022)

Abstract

We introduce a MATLAB-Simulink software able to generate customizable hardware IP cores for the Reinforcement Learning algorithm called Q-Learning. The tool automatically produces the VHDL code and runs both synthesis and implementation for any AMD-Xilinx FPGA using the Vivado software chain. Our automatic generator relies on the “HDL coder” from Mathworks to produce an efficient hardware accelerator based on the state of the art. The model can be customized by the user according to the desired Q-Matrix size and bit-depth for all the algorithm parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. A Bradford Book, Cambridge (2018)

    Google Scholar 

  2. Rothmann, M., Porrmann, M.: A survey of domain-specific architectures for reinforcement learning. IEEE Access 10, 13753–13767 (2022)

    Article  Google Scholar 

  3. Waseem, S.M., Roy, S.K.: Hardware realization of reinforcement learning algorithms for edge devices. In: VLSI and Hardware Implementations Using Modern Machine Learning Methods, pp. 233–254. CRC Press (2021)

    Google Scholar 

  4. Su, J.D., Tsai, P.Y.: Processing element architecture design for deep reinforcement learning with flexible block floating point exploiting signal statistics. In: 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 82–87. IEEE (2020)

    Google Scholar 

  5. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    Article  MATH  Google Scholar 

  6. Cardarilli, G.C., et al.: An FPGA-based multi-agent reinforcement learning timing synchronizer. Comput. Electr. Eng. 99, 107749 (2022)

    Article  Google Scholar 

  7. Liu, X., Diao, J., Li, N.: A FPGA-based accelerator implementation for path planning using q_learning algorithm. J. Phys. Conf. Ser. 2245, 012014 (2022). IOP Publishing

    Google Scholar 

  8. Cardarilli, G.C., et al.: “MR Q-Learning” algorithm for efficient hardware implementations. In: 2021 55th Asilomar Conference on Signals, Systems, and Computers, pp. 1186–1190. IEEE (2021)

    Google Scholar 

  9. Sahoo, S.S., Baranwal, A.R., Ullah, S., Kumar, A.: MemOReL: a memory-oriented optimization approach to reinforcement learning on FPGA-based embedded systems. In: Proceedings of the 2021 on Great Lakes Symposium on VLSI, pp. 339–346 (2021)

    Google Scholar 

  10. Baranwal, A.R., Ullah, S., Sahoo, S.S., Kumar, A.: ReLAccS: a multilevel approach to accelerator design for reinforcement learning on FPGA-based systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(9), 1754–1767 (2020)

    Article  Google Scholar 

  11. Meng, Y., Kuppannagari, S., Rajat, R., Srivastava, A., Kannan, R., Prasanna, V.: QTAccel: a generic FPGA based design for Q-table based reinforcement learning accelerators. In: 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 107–114. IEEE (2020)

    Google Scholar 

  12. Spanó, S., et al.: An efficient hardware implementation of reinforcement learning: the Q-learning algorithm. IEEE Access 7, 186340–186351 (2019)

    Article  Google Scholar 

  13. Da Silva, L.M., Torquato, M.F., Fernandes, M.A.: Parallel implementation of reinforcement learning Q-learning technique for FPGA. IEEE Access 7, 2782–2798 (2018)

    Article  Google Scholar 

  14. Sun, J., Sharma, N., Chakareski, J., Mastronarde, N., Lao, Y.: Hardware acceleration for post-decision state reinforcement learning in IoT systems. IEEE Internet Things J. 9(12), 9889–9903 (2022)

    Article  Google Scholar 

  15. Cardarilli, G.C., et al.: An action-selection policy generator for reinforcement learning hardware accelerators. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2020. LNEE, vol. 738, pp. 267–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66729-0_32

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Advanced Micro Devices, Inc. (AMD) for providing the FPGA software tools with the AMD-Xilinx University Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Spanó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Canese, L., Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M., Spanó, S. (2023). Automatic IP Core Generator for FPGA-Based Q-Learning Hardware Accelerators. In: Berta, R., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2022. Lecture Notes in Electrical Engineering, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-031-30333-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30333-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30332-6

  • Online ISBN: 978-3-031-30333-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics