Skip to main content

Improvement of Sodium-Metal Halide Battery Electrical Equivalent Model Including Temperature Dependency

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2022)

Abstract

Sodium-Metal Halide Batteries are a very promising alternative to the Lithium-ion ones for stationary applications, but their chemical complexity requires an accurate battery model to optimize their use. The electrical equivalent model of the battery is ordinarily used to this aim. The temperature dependency of the model parameters is studied in this work. Three characterization tests are carried-out at 270, 300, and 330 \({}^{\circ }\text {C}\) and analyzed to identify the model parameters. The parameters obtained are then compared with the literature showing that introducing in the model the temperature dependency can improve the accuracy of about six times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Telaretti, E., Dusonchet, L.: Stationary battery systems in the main world markets: part 1: overview of the state-of-the-art. In: 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I &CPS Europe). Institute of Electrical and Electronics Engineers Inc. (2017)

    Google Scholar 

  2. Sessa, S.D., Crugnola, G., Todeschini, M., Zin, S., Benato, R.: Sodium nickel chloride battery steady-state regime model for stationary electrical energy storage. J. Energy Storage 6, 105–115 (2016)

    Article  Google Scholar 

  3. Benato, R., et al.: Sodium nickel chloride battery technology for large-scale stationary storage in the high voltage network. J. Power Sources 293, 127–136 (2015)

    Article  Google Scholar 

  4. Dustmann, C.H.: ZEBRA battery meets USABC goals. J. Power Sources 72(1), 27–31 (1998)

    Article  Google Scholar 

  5. Benato, R., et al.: Sodium-nickel chloride (Na-NiCl\(_2\)) battery safety tests for stationary electrochemical energy storage. In: AEIT 2016 - International Annual Conference: Sustainable Development in the Mediterranean Area, Energy and ICT Networks of the Future (2016)

    Google Scholar 

  6. Boi, M., Battaglia, D., Salimbeni, A., Damiano, A.: A novel electrical model for iron doped-sodium metal halide batteries. IEEE Trans. Ind. Appl. 55(6), 6247–6255 (2019)

    Article  Google Scholar 

  7. Sun, K., Shu, Q.: Overview of the types of battery models. In: Proceedings of the 30th Chinese Control Conference, CCC 2011, pp. 3644–3648 (2011)

    Google Scholar 

  8. Boi, M., Battaglia, D., Salimbeni, A., Damiano, A.: A non-linear electrical model for iron doped sodium metal halides batteries. In: 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018, pp. 2039–2046 (2018)

    Google Scholar 

  9. Di Rienzo, R., Simonte, G., Biagioni, I., Baronti, F., Roncella, R., Saletti, R.: Experimental investigation of an electrical model for sodium-nickel chloride batteries. Energies 13(10), 2652 (2020)

    Article  Google Scholar 

  10. Simonte, G., Di Rienzo, R., Biagioni, I., Baronti, F., Roncella, R., Saletti, R.: Novel setup to extend the temperature characterization range of a sodium-metal halide battery. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2021. LNEE, vol. 866, pp. 126–131. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95498-7_18

    Chapter  Google Scholar 

  11. Morello, R., Di Rienzo, R., Roncella, R., Saletti, R., Baronti, F.: Hardware-in-the-loop platform for assessing battery state estimators in electric vehicles. IEEE Access 6, 68210–68220 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the University of Pisa Project PRA AUTENS, and supported by CrossLab project, funded by MIUR “Department of Excellence” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Simonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simonte, G., Di Rienzo, R., Baronti, F., Roncella, R., Saletti, R. (2023). Improvement of Sodium-Metal Halide Battery Electrical Equivalent Model Including Temperature Dependency. In: Berta, R., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2022. Lecture Notes in Electrical Engineering, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-031-30333-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30333-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30332-6

  • Online ISBN: 978-3-031-30333-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics