Skip to main content

Machine Learning-Based Online Scheduling in Distributed Computing

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2022)

Abstract

In this work, we propose and evaluate an online scheduler prototype based on machine learning algorithms. Online job-flow scheduler should make scheduling and resource allocation decisions for individual jobs without any prior knowledge of the subsequent job queue (i.e., online). We simulate and generalize this task to a more formal 0–1 Knapsack problem with unknown utility functions of the knapsack items. In this way we evaluate the implemented machine learning-based solution to classical combinatorial optimization algorithms. A hybrid machine learning and dynamic programming - based approach is proposed to consider and strictly satisfy the knapsack constraint on the total weight. As a main result the proposed hybrid solution showed efficiency comparable to the greedy knapsack approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bharathi, S., Chervenak, A.L., Deelman, E., Mehta, G., Su, M., Vahi, K.: Characterization of scientific workflows. In: 2008 Third Workshop on Workflows in Support of Large-Scale Science, pp. 1–10 (2008)

    Google Scholar 

  2. Rodriguez, M.A., Buyya, R.: Scheduling dynamic workloads in multi-tenant scientific workflow as a service platforms. Future Gener. Comput. Syst. 79(P2), 739–750 (2018)

    Article  Google Scholar 

  3. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: multicriteria aspects of grid resource management. In: Nabrzyski, J., Schopf, J.M., Weglarz J. (eds.) Grid Resource Management. State of the Art and Future Trends, pp. 271–293. Kluwer Academic Publishers. (2003)

    Google Scholar 

  4. Toporkov, V., Yemelyanov, D.: Coordinated and hindsight resources allocation in distributed computing. In: Proceedings - 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies, PDCAT (2019)

    Google Scholar 

  5. Toporkov, V., Yemelyanov, D., Toporkova, A.: Coordinated global and private job-flow scheduling in grid virtual organizations. J. Simul. Model. Pract. Theor. 107, 102228 (2021)

    Article  Google Scholar 

  6. Sukhoroslov, O., Nazarenko, A., Aleksandrov, R.: An experimental study of scheduling algorithms for many-task applications. J. Supercomput. 75, 7857–7871 (2019)

    Article  Google Scholar 

  7. Samimi, P., Teimouri, Y., Mukhtar M.: A combinatorial double auction resource allocation model in cloud computing. J. Inf. Sci. 357(C), 201–216 (2016)

    Google Scholar 

  8. Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.: Enabling interoperability among grid meta-schedulers. J. Grid Comput. 11(2), 311–336 (2013)

    Article  Google Scholar 

  9. Shmueli, E., Feitelson, D.G.: Backfilling with lookahead to optimize the packing of parallel jobs. J. Parallel Distrib. Comput. 65(9), 1090–1107 (2005)

    Article  MATH  Google Scholar 

  10. Khemka, B., et al.: Resource management in heterogeneous parallel computing environments with soft and hard deadlines. In: Proceedings of 11th Metaheuristics International Conference (MIC 2015) (2015)

    Google Scholar 

  11. Netto, M.A.S., Buyya, R.: A flexible resource co-allocation model based on advance reservations with rescheduling support. In: Technical Report, GRIDSTR-2007-17, Grid Computing and Distributed Systems Laboratory, The University of Melbourne, Australia (2007)

    Google Scholar 

  12. Toporkov, V., Toporkova, A., Yemelyanov, D.: Slot co-allocation optimization in distributed computing with heterogeneous resources. In: Del Ser, J., Osaba, E., Bilbao, M.N., Sanchez-Medina, J.J., Vecchio, M., Yang, X.-S. (eds.) IDC 2018. SCI, vol. 798, pp. 40–49. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99626-4_4

    Chapter  Google Scholar 

  13. Toporkov, V., Yemelyanov, D.: Optimization of resources selection for jobs scheduling in heterogeneous distributed computing environments. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10861, pp. 574–583. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93701-4_45

    Chapter  Google Scholar 

  14. Toporkov, V., Yemelyanov, D.: Scheduling optimization in heterogeneous computing environments with resources of different types. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) DepCoS-RELCOMEX 2021. AISC, vol. 1389, pp. 447–456. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76773-0_43

    Chapter  Google Scholar 

  15. Xu, S., Panwar, S.S., Kodialam, M.S., Lakshman, T.V.: Deep neural network approximated dynamic programming for combinatorial optimization. In: AAAI Conference on Artificial Intelligence, pp. 1684–1691 (2020)

    Google Scholar 

  16. Nomer, H.A.A., Alnowibet, K.A., Elsayed, A., Mohamed, A.W.: Neural knapsack: a neural network based solver for the knapsack problem. In: IEEE Access, vol. 8, pp. 224200–224210 (2020)

    Google Scholar 

  17. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural Combinatorial Optimization with Reinforcement Learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

  18. Yang, F., Jin, T., Liu, T., Sun, X., Zhang, J.: Boosting dynamic programming with neural networks for solving NP-hard problems. In: Proceedings of The 10th Asian Conference on Machine Learning, PMLR, vol. 95, pp. 726–739 (2018)

    Google Scholar 

  19. Yang, X., et al.: A review: machine learning for combinatorial optimization problems in energy areas. Algorithms 15, 205 (2022)

    Article  Google Scholar 

  20. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation project no. 22-21-00372.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Toporkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toporkov, V., Yemelyanov, D., Bulkhak, A. (2023). Machine Learning-Based Online Scheduling in Distributed Computing. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2022. Lecture Notes in Computer Science, vol 13827. Springer, Cham. https://doi.org/10.1007/978-3-031-30445-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30445-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30444-6

  • Online ISBN: 978-3-031-30445-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics