Skip to main content

Acceptance Rates of Invertible Neural Networks on Electron Spectra from Near-Critical Laser-Plasmas: A Comparison

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13827))

  • 600 Accesses

Abstract

While the interaction of ultra-intense ultra-short laser pulses with near- and overcritical plasmas cannot be directly observed, experimentally accessible quantities (observables) often only indirectly give information about the underlying plasma dynamics. Furthermore, the information provided by observables is incomplete, making the inverse problem highly ambiguous. Therefore, in order to infer plasma dynamics as well as experimental parameter, the full distribution over parameters given an observation needs to considered, requiring that models are flexible and account for the information lost in the forward process. Invertible Neural Networks (INNs) have been designed to efficiently model both the forward and inverse process, providing the full conditional posterior given a specific measurement. In this work, we benchmark INNs and standard statistical methods on synthetic electron spectra. First, we provide experimental results with respect to the acceptance rate, where our results show increases in acceptance rates up to a factor of 10. Additionally, we show that this increased acceptance rate also results in an increased speed-up for INNs to the same extent. Lastly, we propose a composite algorithm that utilizes INNs and promises low runtimes while preserving high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Sometimes (unfortunately) also called electron temperature.

  2. 2.

    Or, equivalently, the maximum ion energy in a laser-driven ion spectrum.

  3. 3.

    Note that we use, for the sake of better of readability, henceforth the symbol \(\textbf{x}\) both for our simulation parameter \(\textbf{x}\) as well as normalized ML parameter \(\hat{\textbf{x}}\).

  4. 4.

    Not including ActNorm, invertible 1\(\,\times \,\)1 convolutions, etc. relevant for their specific application, but only the coupling part itself.

  5. 5.

    I.e. 4000 and 1000 data points for the train and test set, respectively.

References

  1. Ardizzone, L., Kruse, J., Rother, C., Köthe, U.: Analyzing inverse problems with invertible neural networks (2018). http://arxiv.org/abs/10.48550/ARXIV.1808.04730

  2. Beaumont, M.A.: Approximate bayesian computation. Ann. Rev. Stat. Appl. 6, 379–403 (2019). https://doi.org/10.1146/annurev-statistics-030718-105212

    Article  MathSciNet  Google Scholar 

  3. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. CRC Press, Boca Raton (2018)

    Google Scholar 

  4. Burau, H., et al.: Picongpu: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839 (2010). https://doi.org/10.1109/tps.2010.2064310

    Article  Google Scholar 

  5. Derouillat, J., et al.: Smilei: a collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun. 222, 351–373 (2018). https://doi.org/10.1016/j.cpc.2017.09.024

    Article  MathSciNet  Google Scholar 

  6. Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components estimation. arXiv preprint arXiv:1410.8516 (2014). https://doi.org/10.48550/ARXIV.1410.8516

  7. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP (2016). https://doi.org/10.48550/ARXIV.1605.08803

  8. Djordjević, B.Z., et al.: Modeling laser-driven ion acceleration with deep learning. Phys. Plasmas 28(4), 043105 (2021). https://doi.org/10.1063/5.0045449

  9. Gibbon, P.: Short-Pulse Laser Interactions with Matter: an Introduction. World Scientific, Singapore (2005)

    Google Scholar 

  10. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Hockney, R.W., Eastwood, J.W.: Computer Simulation using Particles. CRC Press, Boca Raton (2021)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://doi.org/10.48550/ARXIV.1412.6980

  13. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  14. Kluge, T., Cowan, T., Debus, A., Schramm, U., Zeil, K., Bussmann, M.: Electron temperature scaling in laser interaction with solids. Phys. Rev. Lett. 107(20), 205003 (2011). https://doi.org/10.1103/PhysRevLett.107.205003

    Article  Google Scholar 

  15. Macchi, A.: A review of laser-plasma ion acceleration (2017). https://doi.org/10.48550/ARXIV.1712.06443

  16. Mora, P.: Plasma expansion into a vacuum. Phys. Rev. Lett. 90(18), 185002 (2003). https://doi.org/10.1103/PhysRevLett.90.185002

    Article  Google Scholar 

  17. Niederreiter, H.: Random number generation and quasi-monte Carlo methods. SIAM (1992). https://doi.org/10.1137/1.9781611970081

    Article  MATH  Google Scholar 

  18. Russel, S., Norvig, P., et al.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, London (2013)

    Google Scholar 

  19. Wilks, S.C., et al.: Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8(2), 542–549 (2001). https://doi.org/10.1063/1.1333697

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Miethlinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miethlinger, T., Hoffmann, N., Kluge, T. (2023). Acceptance Rates of Invertible Neural Networks on Electron Spectra from Near-Critical Laser-Plasmas: A Comparison. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2022. Lecture Notes in Computer Science, vol 13827. Springer, Cham. https://doi.org/10.1007/978-3-031-30445-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30445-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30444-6

  • Online ISBN: 978-3-031-30445-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics