Skip to main content

Structural and Electronic Properties of Small-Diameter Carbon NanoTubes: A DFT Study

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2022)

Abstract

One of the crucial properties of Carbon NanoTubes (CNTs) is their conductivity. They can be metallic, semiconducting or insulating in nature [6]. Therefore, their conducting properties are closely related to the existence and width of CNTs energy band gap – quantity which is (relatively) easily calculable. From a theoretical point of view, CNTs have been studied by various methods. Many results have been obtained; however, their status is quite diverse. The widespread rule claims that (n,m) CNT is metallic if \(n-m = 0\) mod 3 [2, 6]. This rule was based on ‘gluing’ of graphene sheets into tubes (or the ‘zone folding’ method). Moreover, the geometry of all hexagons has been assumed to be identical – the structure optimization hasn’t been performed. Such an approach can be reliable for large-diameter CNTs, where curvature effects are small. However, it is at least disputable for its applicability to small-diameter CNTs. For these reasons, we undertook a systematic exploration of small-diameter CNTs to examine the significance of the ‘deviation’ effects (i.e. the deviation from planar regular hexagon geometry) on properties of CNTs. In particular, we wanted to check explicitly the validity of the claim that ‘CNTs (n,m), where \(n-m\) = 0 mod 3, possess zero energy gap’.

In our paper, we present the results of calculations for (2, m) and (3, m) series of CNTs. These are optimized geometries, densities of states, energy gaps, and electronic band structures. The general conclusion is that the ‘zone-folding’ based rule predicting metallicity for those CNTs where \(n-m=0\) mod 3 is fulfilled, besides the find that hexagons forming CNTs are not planar and possess non-equal bond lengths. So this ‘zone-folding’ based law describes conductivity aspects of CNTs amazingly well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brzostowski, B., Durajski, A., Gruszka, K., Wojtkiewicz, J.: Geometric isomers of the (3,1) carbon nanotube: a theoretical study. Acta Phys. Pol. A 142 (2022). https://doi.org/10.12693/APhysPolA.142.21

  2. Fox, M.: Optical Properties of Solids. Oxford University Press, Oxford (2010)

    Google Scholar 

  3. Frisch, M.J., et al.: Gaussian 09 Revision D.01, Gaussian Inc., Wallingford CT (2013)

    Google Scholar 

  4. Giannozzi, P., Andreussi, O., Brumme, T., et al.: Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017). https://doi.org/10.1088/1361-648x/aa8f79

    Article  Google Scholar 

  5. Giannozzi, P., Baroni, S., Bonini, N., et al.: Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  6. Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.): TAP, vol. 111. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72865-8

    Book  Google Scholar 

  7. Kamal, C., Chakrabarti, A.: Comparison of electronic and geometric structures of nanotubes with subnanometer diameters: a density functional theory study. Phys. Rev. B 76, 075113 (2007). https://doi.org/10.1103/PhysRevB.76.075113

    Article  Google Scholar 

  8. Kataura, H., et al.: Optical properties of single-wall carbon nanotubes. Synth. Metals 103(1), 2555–2558 (1999). https://doi.org/10.1016/S0379-6779(98)00278-1

    Article  Google Scholar 

  9. Mao, Y.L., Yan, X.H., Xiao, Y., Xiang, J., Yang, Y.R., Yu, H.L.: The viability of 0.3 nm diameter carbon nanotubes. Nanotechnology 15(8), 1000–1003 (2004). https://doi.org/10.1088/0957-4484/15/8/024

  10. Mao, Y.L., Yan, X.H., Xiao, Y., Xiang, J., Yang, Y.R., Yu, H.L.: First-principles study of the (2,2) carbon nanotube. Phys. Rev. B 71, 033404 (2005). https://doi.org/10.1103/PhysRevB.71.033404

    Article  Google Scholar 

  11. Monkhorst, H.J., Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  MathSciNet  Google Scholar 

  12. https://nanotube.msu.edu/tubeASP/

  13. Niranjan, M.K.: Theoretical investigation of electronic bandgaps of semiconducting single-walled carbon nanotubes using semi-empirical self-consistent tight binding and ab-inito density functional methods. J. Phys. Commun. 4(1), 015004 (2020). https://doi.org/10.1088/2399-6528/ab62c0

    Article  MathSciNet  Google Scholar 

  14. Parr, R., Yang, W.: Density-functional theory of atoms and molecules. Oxford University Press, Oxford (1995). https://doi.org/10.1093/oso/9780195092769.001.0001

  15. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  16. Soler, J.M., et al.: The SIESTA method for ab initio order-N materials simulation. J. Phys.Conden. Matter 14, 2745–2779 (2002). https://doi.org/10.1088/0953-8984/14/11/302

    Article  Google Scholar 

  17. Spataru, C.D., Ismail-Beigi, S., Benedict, L.X., Louie, S.G.: Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes. Appl. Phys. A 78(8), 1129–1136 (2004). https://doi.org/10.1007/s00339-003-2464-2

    Article  Google Scholar 

  18. Wojtkiewicz, J., Brzostowski, B., Pilch, M.: Electronic and optical properties of carbon nanotubes directed to their applications in solar cells. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds.) Parallel Processing and Applied Mathematics, pp. 341–349 (2020). https://doi.org/10.1007/978-3-030-43222-5_30

  19. Wojtkiewicz, J., Pilch, M.: Theoretical study of carbon nanotubes as candidates for active layer in solar cells. Comput. Theoret. Chem. 1216, 113846 (2022). https://doi.org/10.1016/j.comptc.2022.113846

    Article  Google Scholar 

  20. Yuan, J., Huang, Y.: Structural, electronic and optical properties of smallest (2, 2) carbon nanotube: a plane-wave pseudopotential total energy calculation. J. Mol. Struct. THEOCHEM 942(1–3), 88–92 (2010). https://doi.org/10.1016/j.theochem.2009.11.041

    Article  Google Scholar 

Download references

Acknowledgements

BB acknowledges the access to the PSNC supercomputing resources.

APD is grateful to the Czestochowa University of Technology - MSK CzestMAN for granting access to the computing infrastructure built-in project no. POIG.02.03.00-00-028/08 “PLATON - Science Services Platform” and POIG.02.03.00-00-110/13 “Deploying high-availability, critical services in Metropolitan Area Networks (MAN-HA)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Brzostowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brzostowski, B., Durajski, A.P., Gruszka, K.M., Wojtkiewicz, J. (2023). Structural and Electronic Properties of Small-Diameter Carbon NanoTubes: A DFT Study. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2022. Lecture Notes in Computer Science, vol 13827. Springer, Cham. https://doi.org/10.1007/978-3-031-30445-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30445-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30444-6

  • Online ISBN: 978-3-031-30445-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics