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Abstract. A dominating set S of graph G is called an r-grouped domi-
nating set if S can be partitioned into S1, S2, . . . , Sk such that the size of
each unit Si is r and the subgraph of G induced by Si is connected. The
concept of r-grouped dominating sets generalizes several well-studied
variants of dominating sets with requirements for connected component
sizes, such as the ordinary dominating sets (r = 1), paired dominating
sets (r = 2), and connected dominating sets (r is arbitrary and k = 1). In
this paper, we investigate the computational complexity of r-Grouped
Dominating Set, which is the problem of deciding whether a given
graph has an r-grouped dominating set with at most k units. For gen-
eral r, r-Grouped Dominating Set is hard to solve in various senses
because the hardness of the connected dominating set is inherited. We
thus focus on the case in which r is a constant or a parameter, but we
see that r-Grouped Dominating Set for every fixed r > 0 is still hard
to solve. From the observations about the hardness, we consider the pa-
rameterized complexity concerning well-studied graph structural param-
eters. We first see that r-Grouped Dominating Set is fixed-parameter
tractable for r and treewidth, which is derived from the fact that the
condition of r-grouped domination for a constant r can be represented
as monadic second-order logic (MSO2). This fixed-parameter tractability
is good news, but the running time is not practical. We then design an
O∗(min{(2τ(r + 1))τ , (2τ)2τ})-time algorithm for general r ≥ 2, where
τ is the twin cover number, which is a parameter between vertex cover
number and clique-width. For paired dominating set and trio dominating
set, i.e., r ∈ {2, 3}, we can speed up the algorithm, whose running time
becomes O∗((r + 1)τ ). We further argue the relationship between FPT
results and graph parameters, which draws the parameterized complexity
landscape of r-Grouped Dominating Set.
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1 Introduction

1.1 Definition and motivation

Given an undirected graph G = (V,E), a vertex set S ⊆ V is called a dominating
set if every vertex in V is either in S or adjacent to a vertex in S. The dominating
set problem is the problem of finding a dominating set with the minimum car-
dinality. Since the definition of dominating set, i.e., covering all the vertices via
edges, is natural, many practical and theoretical problems are modeled as domi-
nating set problems with additional requirements; many variants of dominating
set are considered and investigated. Such variants somewhat generalize or extend
the ordinary dominating set based on theoretical or applicational motivations.
In this paper, we focus on variants that require the dominating set to satisfy
specific connectivity and size constraints. One example considering connectivity
is the connected dominating set. A dominating set is called a connected domi-
nating set if the subgraph induced by a dominating set is connected. Another
example is the paired dominating set. A paired dominating set is a dominating
set of a graph such that the subgraph induced by it admits a perfect matching.

This paper introduces the r-grouped dominating set, which generalizes the
connected dominating set, the paired dominating set, and some other variants.
A dominating set S is called an r-grouped dominating set if S can be partitioned
into {S1, S2, . . . , Sk} such that each Si is a set of r vertices and G[Si] is con-
nected. We call each Si a unit. The r-grouped dominating set generalizes both
the connecting dominating set and the paired dominating set in the following
sense: a connecting dominating set with r vertices is equivalent to an r-grouped
dominating set of one unit, and a paired dominating set with k pairs is equivalent
to a 2-grouped dominating set with k units.

This paper investigates the parameterized complexity of deciding whether a
given graph has an r-grouped dominating set with k units. The parameters that
we focus on are so-called graph structural parameters, such as vertex cover num-
ber and twin-cover number. The results obtained in this paper are summarized
in Our Contribution (Section 1.3).

1.2 Related work

An enormous number of papers study the dominating set problem, including the
ones strongly related to the r-grouped dominating set.

The dominating set problem is one of the most important graph optimization
problems. Due to its NP-hardness, its tractability is finely studied from several
aspects, such as approximation, solvable graph classes, fast exact exponential-
time solvability, and parameterized complexity. Concerning the parameterized
complexity, the dominating set problem is W[2]-complete for solution size k; it
is unlikely to be fixed-parameter tractable [15]. On the other hand, since the
dominating set can be expressed in MSO1, it is FPT when parametrized by
clique-width or treewidth (see, e.g., [27]).
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The connected dominating set is a well-studied variant of dominating set.
This problem arises in communication and computer networks such as mobile
ad hoc networks. It is also W[2]-hard when parameterized by the solution size
[15]. Furthermore, the connected dominating set also can be expressed in MSO1;
it is FPT when parametrized by clique-width and treewidth as in the ordinary
dominating set problem. Furthermore, single exponential-time algorithms for
connected dominating set parameterized by treewidth can be obtained by the
Cut & Count technique [16] or the rank-based approach [4].

The notion of the paired dominating set is introduced in [25,26] by Haynes
and Slater as a model of dominating sets with pairwise backup. It is NP-hard
on split graphs, bipartite graphs [10], graphs of maximum degree 3 [8], and
planar graphs of maximum degree 5 [36], whereas it can be solved in polynomial
time on strongly-chordal graphs [9], distance-hereditary graphs [30], and AT-free
graphs [36]. There are several graph classes (e.g., strongly orderable graphs [33])
where the paired dominating set problem is tractable, whereas the ordinary
dominating set problem remains NP-hard. For other results about the paired
dominating set, see a survey [17].

1.3 Our contributions

This paper provides a unified view of the parameterized complexity of dominat-
ing set problem variants with connectivity and size constraints.

As mentioned above, an r-grouped dominating set of G with 1 unit is equiva-
lent to a connected dominating set with size r, which implies that some hardness
results of r-Grouped Dominating Set for general r are inherited directly from
Connected Dominating Set. From these, we mainly consider the case where
r is a constant or a parameter.

Unfortunately, r-Grouped Dominating Set for r = 1, 2 is also hard to
solve again because 1-Grouped Dominating Set and 2-Grouped Dominat-
ing Set are respectively the ordinary dominating set problem and the paired
dominating set problem. Thus, it is worth considering whether a larger but
constant r enlarges, restricts, or leaves unchanged the graph classes for which
similar hardness results hold. A way to classify or characterize graphs of certain
classes is to focus on graph-structural parameters. By observing that the con-
dition of r-grouped dominating set can be represented as monadic second-order
logic (MSO2), we can see that r-Grouped Dominating Set is fixed-parameter
tractable for r and treewidth. Recall that the condition of the connected dom-
inating set can be represented as monadic second-order logic (MSO1), which
implies that there might exist a gap between r = 1 and 2, or between k = 1
and k > 1. Although this FPT result is good news, its time complexity is not
practical. From these observations, we focus on less generalized graph structural
parameters, vertex cover number ν or twin cover number τ as a parameter, and
design single exponential fixed-parameter algorithms for r-Grouped Dominat-
ing Set.

Our algorithm is based on dynamic programming on nested partitions of a
vertex cover, and its running time is O∗(min{(2ν(r + 1))ν , (2ν)2ν}) for general



4 T. Hanaka et al.

r ≥ 2. For paired dominating set and trio dominating set, i.e., r ∈ {2, 3}, we can
tailor the algorithm to run in O∗((r + 1)ν) time by observing that the nested
partitions of a vertex cover degenerate in some sense.

We then turn our attention to a more general parameter, the twin cover num-
ber. We show that, given a twin cover, r-Grouped Dominating Set admits an
optimal solution in which twin-edges do not contribute to the connectivity of r-
units. This observation implies that these edges can be removed from the graph,
and thus we can focus on the resultant graph of bounded vertex cover number.
Hence, we can conclude that our algorithms still work when the parameter ν in
the running time is replaced with twin cover number τ .

We further argue the relationship between FPT results and graph parame-
ters. The perspective is summarized in Figure 1, which draws the parameterized
complexity landscape of r-Grouped Dominating Set.

FPT ( + r + k)
Corollaries 5.1 and 5.2

FPT (+r)
Corollary 5.3

W[1]-hard (+k)
Theorem 5.5

FPT
Theorem 5.6

2O(τ log τ) time
Corollary 4.2

twin-width nowhere dense

clique-width

modular-width treewidth

feedback vertex set pathwidth

twin cover treedepth

vertex cover

Fig. 1. The complexity of r-Grouped Dominating Set with respect to structural
graph parameters. An edge between two parameters indicates that there is a function
in the one above that lower-bounds the one below (e.g., treewidth ≤ pathwidth).

2 Preliminaries

LetG = (V,E) be an undirected graph. For a vertex subset V ′ ⊆ V , the subgraph
induced by V ′ is denoted by G[V ′]. Also, let us denote by N(v) and N [v] the
open neighborhood and the closed neighborhood of v, respectively. The degree
of a vertex v is defined by d(v) = |N(v)|. The maximum degree of G is denoted
by ∆.

A vertex set S is a vertex cover of G if for every edge {u, v} ∈ E, at least
one of u, v is in S. The vertex cover number ν of G is defined by the size of
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a minimum vertex cover of G. A minimum vertex cover of G can be found in
O∗(1.2738ν) time [7].3

Two vertices u and v are (true) twins if N [u] = N [v]. An edge {u, v} ∈ E is
a twin edge if u and v are true twins. A vertex set S is a twin cover if for every
edge {u, v} ∈ E, either {u, v} is a twin edge, or at least one of u, v is in S. The
size τ of a minimum twin cover of G is called the twin cover number of G. A
minimum twin cover of G can be found in O∗(1.2738τ ) time [21].

We briefly introduce basic terminology of parameterized complexity. Given
an input size n and a parameter k, a problem is fixed-parameter tractable (FPT)
if it can be solved in f(k)nO(1) time where f is some computable function. Also,
a problem is slice-wise polynomial (XP) if it can be solved in nf(k) time. See
standard textbooks (e.g., [15]) for more details.

2.1 r-Grouped Dominating Set

An r-grouped dominating set with k units in G is a family D = {D1, . . . , Dk} of
subsets of V such that Di’s are mutually disjoint, |Di| = r, G[Di] is connected
for 1 ≤ i ≤ k, and

⋃
D∈DD is a dominating set of G. For simplicity, let

⋃
D

denote
⋃
D∈DD. We say that D is a minimum r-grouped dominating set if it is

an r-grouped dominating set with the minimum number of units.

r-Grouped Dominating Set
Input: A graph G and positive integers r and k.

Question: Is there an r-grouped dominating set with at most k units in G?

3 Basic Results

In this section, we prove r-Grouped Dominating Set is W[2]-hard but XP
when parameterized by k+ r and it is NP-hard even on planar bipartite graphs
of maximum degree 3.

We first observe that finding an r-grouped dominating set with at most 1 unit
is equivalent to finding a connected dominating set of size r. Thus, the W[2]-
hardness of r-Grouped Dominating Set parameterized by r follows the one
of Connected Dominating Set parameterized by the solution size. Also, the
case r = 1 follows immediately from the hardness of the ordinary Dominating
Set, which is W[2]-complete on split graphs and bipartite graphs [34]. In the
remaining part of this section, we discuss the hardness results only for the cases
r ≥ 2 and k ≥ 2.

Theorem 3.1. For every fixed k ≥ 1, r-Grouped Dominating Set is W[2]-
hard when parameterized by r even on split graphs.

Proof. We give a reduction from Dominating Set on split graphs. Let 〈G =
(C ∪ I, E), r〉 be an instance of Dominating Set where C forms a clique and

3 The O∗ notation suppresses the polynomial factors of the input size.
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I forms an independent set. Without loss of generality, we suppose that |C| ≥ 2
and |I| ≥ 2. We create k copies G1 = (V1, E1), . . . , Gk = (Vk, Ek) of G where
Vi = {v(i) | v ∈ V } and Ei = {e(i) | e ∈ E}. Note that Vi = Ci ∪ Ii. Finally, we
make

⋃
i Ci a clique. The resulting graph G′ is clearly a split graph.

We show that there is a dominating set of size at most r in G if and only if
there is an r-grouped dominating set with at most k units in G′.

Suppose that there is a dominating set D of size at most r in G. Without loss
of generality, we can assume that D ⊆ C [3]. Then we define D′i = {v(i) | v ∈ D}
for 1 ≤ i ≤ k and D′ =

⋃
iD
′
i. Since D is a dominating set in G, so is D′i on

Gi for each i. Thus, D′ is a dominating set in G′. Because Gi is a split graph
and a clique and D′i ⊆ Ci, D

′
i is a connected dominating set of Gi of size at

most r. If |D′i| < r, we arbitrarily add r − |D′i| vertices in Gi to D′i. Then, we
have a connected dominating set D′i of Gi of size exactly r for each i, which
can be regarded as a unit of size r of an r-grouped dominating set. Clearly,
{D′i | 1 ≤ i ≤ k} is an r-grouped dominating set with k units in G′

Conversely, suppose that there is an r-grouped dominating set D with at
most k units in G′. Then there is a vertex set Di =

⋃
D ∩ Vi of size at most r

in some Gi by |
⋃
D| ≤ rk. Since |Ii| ≥ 2, Di contains at least one vertex in Ci.

Moreover, any vertex not in Vi cannot dominate vertices in Ii. This means that
Di is a dominating set in Gi. Since Gi is a copy of G, there is a dominating set
of size at most r in G. ut

By a similar reduction, we also show that r-Grouped Dominating Set is
W[2]-hard when parameterized by k.

Theorem 3.2. For every fixed r ≥ 1, r-Grouped Dominating Set is W[2]-
hard when parameterized by k even on split graphs.

Proof. We give a reduction from Dominating Set on split graphs. Let 〈G =
(C ∪ I, E), k〉 be an instance of Dominating Set where C forms a clique and
I forms an independent set. Without loss of generality, we suppose that |C| ≥ 2
and |I| ≥ 2. We create r copies G1 = (V1, E1), . . . , Gr = (Vr, Er) of G where
Vi = {v(i) | v ∈ V } and Ei = {e(i) | e ∈ E}. Note that Vi = Ci ∪ Ii. Then we
make

⋃
i Ci a clique. The resulting graph G′ is clearly a split graph.

We show that there is a dominating set of size at most k in G if and only if
there is an r-grouped dominating set with at most k units in G′.

Suppose that there is a dominating set D of size at most k in G. Without
loss of generality, we can assume that D ⊆ C. For each v ∈ D, we define
Dv = {v(i) | 1 ≤ i ≤ r}. Furthermore, let D = {Dv | v ∈ D}. We see that D is
an r-grouped dominating set with at most k units in G′. Since D is a dominating
set in G and G′ consists of r copies of G,

⋃
D is clearly a dominating set in G′.

Furthermore, because
⋃
i Ci is a clique, each Dv forms a clique of size r, which

can be regarded as a unit. By the assumption that |D| ≤ k, we conclude that D
is an r-grouped dominating set with at most k units in G′.

Conversely, suppose that there is an r-grouped dominating set D with at
most k units in G′. We see that there is a dominating set D of size at most k in
some Gi. Indeed,

⋃
D∩Vi is a dominating set D of size at most k in Gi because
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|
⋃
D| ≤ rk and there is a vertex in

⋃
D ∩ Ci by |I| ≥ 2. This completes the

proof. ut

Furthermore, we show the W[2]-hardness of r-Grouped Dominating Set
on bipartite graphs.

Theorem 3.3. For every fixed k ≥ 1, r-Grouped Dominating Set is W[2]-
hard when parameterized by r even on bipartite graphs.

Proof. We reduce Dominating Set on split graphs to r-Grouped Dominat-
ing Set.

We are given an instance 〈G = C ∪ I, E), r〉 of Dominating Set. Without
loss of generality, we assume |C| ≥ 2, |I| ≥ 2. Moreover, we assume that if
〈G = C ∪ I, E), r〉 is a yes-instance, there is a dominating set D of size at most
r such that D ⊆ C [3].

We first delete all the edges in the clique C, and add two edges {s1, t}, {s2, t}
and connect t to all the vertices in C. The obtained graph is bipartite. We then

create k copiesG1 = (V1∪{s(1)
1 , s

(1)
2 , t(1)}, E1), . . . , Gk = (Vk∪{s(k)

1 , s
(k)
2 , t(k)}, Ek)

of the graph where Vi = {u(i) | u ∈ V } for 1 ≤ i ≤ k. To connect G1, . . . , Gk,

we add edges {s(i)
1 , s

(i+1)
1 } for 1 ≤ i ≤ k− 1. The resulting graph denoted by G′

remains bipartite.
In the following, we show that there is a dominating set of size at most r

in G if and only if there is an (r + 1)-grouped dominating set with k units in
G′. Suppose that there is a dominating set D ⊆ C of size at most r in G. We
assume that |D| = r because otherwise we only have to add r − |D| vertices in
G to D arbitrarily. For each graph Gi, define Di = {v(i) | v ∈ D}. Since t(i) is

connected to s
(i)
1 , s

(i)
2 , and all the vertices in the clique part Ci of Gi and Di is

a dominating set in Gi[Vi], Di∪{t(i)} is a connected dominating set of size r+ 1
in Gi. Therefore, {Di ∪ {t(i)} | 1 ≤ i ≤ k} is an (r + 1)-grouped dominating set
with k units in G′.

Conversely, let D be an (r + 1)-grouped dominating set with k units in G′.

Since |
⋃
D| ≤ (r + 1)k, some Gi satisfies |

⋃
D ∩ Vi ∪ {s(i)

1 , s
(i)
2 , t(i)}| ≤ (r + 1).

To dominate s
(i)
2 ,
⋃
D must contains t(i). Note that r ≥ 2. Thus, |

⋃
D∩Vi| ≤ r.

Furthermore, Gi is bipartite and |I| ≥ 2, hence there is a vertex v(i) in
⋃
D∩Ci.

Let D ⊆ V be a set in G corresponding to
⋃
D ∩ Vi. Then D is a dominating

set of size r in G. Indeed, since
⋃
D ∩ Vi dominates the independent set part of

Gi, D also dominates the independent set part of G. Moreover, since G is a split
graph, vertex v ∈ V corresponding to v(i) dominates all the vertices in D. This
completes the proof. ut

Theorem 3.4. For every fixed r ≥ 1, r-Grouped Dominating Set is W[2]-
hard when parameterized by k even on bipartite graphs.

Proof. We reduce Dominating Set on split graphs to r-Grouped Dominat-
ing Set.

We are given an instance 〈G = C ∪ I, E), k〉 of Dominating Set. Without
loss of generality, if 〈G = C ∪ I, E), k〉 is a yes-instance, there is a dominating
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set D of size at most k such that D ⊆ C [3]. Then we construct a bipartite
graph G′ as follows. First, delete all the edges in the clique C. Then G becomes
a bipartite graph. We next add k paths of length r and connect an endpoint of

each path to all the vertices in C. Let Pi = (u
(i)
1 , . . . , u

(i)
r ) denote such paths for

1 ≤ i ≤ k, and u
(i)
1 ’s are the endpoints connected to C. The resulting graph G′

is bipartite.
Suppose that G has a dominating set D = {v1, . . . , v|D|} ⊆ C of size at

most k. From D, we construct an r-grouped dominating set with k units. For

each vi ∈ D, we choose a path vi, u
(i)
1 , . . . , u

(i)
r−1 of length r as one unit of the

r-grouped dominating set. If |D| < k, we choose the remaining k − |D| paths

u
(i)
1 , . . . , u

(i)
r for |D|+ 1 ≤ i ≤ r. Let D be the set of such k paths. Then D is an

r-grouped dominating set with k units because the length of each path in D is r
and

⋃
D contains D, which dominates all the vertices in the original G and the

vertices in Pi’s.
Conversely, let D be an r-grouped dominating set with k units in G′. To

dominate an endpoint u
(i)
r in Pi,

⋃
D must contain u

(i)
r−1, which implies |

⋃
D ∩⋃

i Pi| ≥ k(r− 1). Thus, we have |(C ∪ I)∩
⋃
D| ≤ k. Since

⋃
D is a dominating

set of G′ and any vertex in Pi’s cannot dominate I, (C∪I)∩
⋃
D is a dominating

set of size k in G. ut

On the other hand, we can show that the problem is XP when parameterized
by k + r.

Theorem 3.5. r-Grouped Dominating Set can be solved in O∗(∆O(kr2))
time.

Proof. We guess the candidates of r-grouped dominating sets with at most k
units. We first pick an arbitrary vertex v and branch d(v) + 1 cases. One case is
that v is contained in D. The vertices in the unit containing v is reachable from
v via at most r−1 edges. Since the number of such vertices is at most ∆r−1, the

choice of the other r − 1 vertices is at most
(
∆r−1

r−1

)
= ∆O(r2). Thus the number

of candidates of units that contains v is ∆O(r2). Another case is that v is not
contained in D. Then at least one neighbor of v is contained in D. The number
of candidates of units that contain it is also ∆O(r2). Therefore, the total number
of candidates of units that dominate v is ∆O(r2). After guessing one unit, we
repeatedly pick a non-dominated vertex and branch as above. The repetition
occurs at most k times. Thus, the total running time is ∆O(kr2). ut

Corollary 3.6. r-Grouped Dominating Set belongs to XP when parameter-
ized by k + r.

Tripathi et al. [36] showed that Paired Dominating Set (equivalently, 2-
Grouped Dominating Set) is NP-complete for planar graphs with maximum
degree 5. We show that r-Grouped Dominating Set is NP-hard even on pla-
nar bipartite graphs of maximum degree 3 for every fixed r ≥ 1. This strengthens
the result by Tripathi et al. [36].
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Theorem 3.7. For every fixed r ≥ 1, r-Grouped Dominating Set is NP-
complete on planar bipartite graphs of maximum degree 3.

Proof. We reduce Restricted Planar 3-SAT to r-Grouped Dominating
Set. Restricted Planar 3-SAT is a variant of Planar 3-SAT such that
each variable occurs in exactly three clauses, in at most two clauses positively
and in at most two clauses negatively. It is known that Restricted Planar
3-SAT is NP-complete [31].

Let φ be an instance of Restricted Planar 3-SAT, n and m be the
number of variables and clauses of φ, respectively. The incidence graph of φ is
a bipartite graph such that it consists of variable vertices vxi ’s corresponding to
variables and clause vertices cj ’s corresponding to clauses. A variable vertex vxi
is connected to a clause variable cj if Cj has a literal of xi. The incidence graph
of φ is planar.

For the incidence graph of φ, we construct the graph G = (V,E) by replacing
variable vertices by variable gadgets. For each variable xi, its variable gadget is
constructed as follows. We create three vertices vxi , vx̄i , yi, and then add edges

{vxi , yi}, {vx̄i , yi}. Furthermore, we attach a path P ri = yiz
(1)
i z

(2)
i · · · z

(r−1)
i of

length r − 1 for each yi. Here, we define z
(0)
i = yi. Let VX = {vxi , vx̄i | i ∈

{1, . . . , n}} and VC = {cj | j ∈ {1, . . . ,m}}. For each variable xi, vxi is con-
nected to cj if Cj has a positive literal of xi, and vx̄i is connected to cj if Cj has
a negative literal of xi. We complete the construction of the graph G = (V,E).
Figure 2 shows a concrete example of G = (V,E) for φ. Notice that G is bipar-
tite because VX and VC form independent sets, respectively, and P ri is a path.
Furthermore, G is planar because the incidence graph of φ and the variable gad-
gets are planar. Finally, since each variable occurs in exactly three clauses, in at
most two clauses positively and in at most two clauses negatively, the maximum
degree of G is at most 3.

We are ready to show that φ is a yes-instance if and only if there is an
r-grouped dominating set with at most n in G.

Suppose that we are given a truth assignment of φ. For each variable xi,

we select path vxiyiz
(1)
i z

(2)
i · · · z

(r−2)
i as a unit of an r-grouped dominating set

if xi is assigned to true. Otherwise, we select path vx̄iyiz
(1)
i z

(2)
i · · · z

(r−2)
i . The

number of vertices in each unit is r. The unit of xi dominates vertex z
(r−1)
i .

Since each clause has at least one truth literal for the truth assignment, each
clause vertex cj is dominated by some unit. Therefore, the set of selected paths
is an r-grouped dominating set with at most n units.

Conversely, we are given an r-grouped dominating set D with at most n in

G. For each i, z
(r−2)
i must be contained in

⋃
D. If not, z

(r−1)
i is not dominated

because of r ≥ 2. Since P ri is a path of length r − 1 and the number of units is

n, the vertices of a unit are selected from {vxi , vx̄i} ∪ {yi, z
(1)
i , z

(2)
i , · · · , z(r−1)

i }
for each i and the unit forms a path of length r. If vertex z

(r−1)
i is contained in⋃

D,
⋃
D does not contain vxi and vx̄i . Thus, we can remove z

(r−1)
i from

⋃
D

and add either vxi or vx̄i arbitrarily to
⋃
D. Since vxiyiz

(1)
i z

(2)
i · · · z

(r−2)
i is a
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c1 c2 c3 c4

vx1 vx̄1 vx̄2 vx̄3 vx̄4vx2 vx3 vx4

y1 y2 y3 y4

z
(1)
1 z

(1)
2 z

(1)
3 z

(1)
4

z
(2)
1 z

(2)
2 z

(2)
3 z

(2)
4

Fig. 2. The graph G obtained by the reduction from an instance φ = (x1∨x2∨ x̄4)(x̄1∨
x2 ∨ x̄3)(x̄2 ∨ x3 ∨ x4)(x̄1 ∨ x̄3 ∨ x̄4) of Restricted Planar 3-SAT to 3-Grouped
Dominating Set.

path of length r, this replacement does not collapse the property of r-grouped
dominating set. Thus, we can suppose that the path of ith unit of D has either
vxi or vx̄i as an endpoint. Since

⋃
D is a dominating set, each vertex in VC has

at least one vertex in D ∩ VX as a neighbor. This implies that the assignment
corresponding to the selection of endpoints of units is a truth assignment. This
completes the proof. ut

In the proof of Theorem 3.7, the size of the constructed graph for φ is O(rn+
m). Thus, we have the following corollary.

Corollary 3.8. For every fixed r ≥ 1, r-Grouped Dominating Set cannot
be solved in time 2o(n+m) on bipartite graphs unless ETH fails.

4 Fast Algorithms Parameterized by Vertex Cover
Number and by Twin Cover Number

In this section, we present FPT algorithms for r-Grouped Dominating Set
parameterized by vertex cover number ν. Our algorithm is based on dynamic
programming on nested partitions of a vertex cover, and its running time is
O∗((2ν(r+ 1))ν) for general r ≥ 2. For the cases of r ∈ {2, 3}, we can tailor the
algorithm to run in O∗((r + 1)ν) time by focusing on the fact that the nested
partitions of a vertex cover degenerate in some sense.

We then turn our attention to a more general parameter twin cover number.
We show that, given a twin cover, r-Grouped Dominating Set admits an
optimal solution in which twin-edges do not contribute to the connectivity of
r-units. This implies that these edges can be removed from the graph, and thus
we can focus on the resultant graph of bounded vertex cover number. Hence, we
can conclude that our algorithms still work when the parameter ν in the running
time is replaced with twin cover number τ .
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Theorem 4.1. For graphs of twin cover number τ , r-Grouped Dominating
Set can be solved in O∗((2τ(r + 1))τ ) time. For the cases of r ∈ {2, 3}, it can
be solved in O∗((r + 1)τ ) time.

With a simple observation, Theorem 4.1 implies that r-Grouped Dominat-
ing Set parameterized solely by τ is fixed-parameter tractable.

Corollary 4.2. For graphs of twin cover number τ , r-Grouped Dominating
Set can be solved in O∗((2τ)2τ ) time.

Proof. If r < 2τ − 1, then the problem can be solved in O∗((2τ)2τ ) time by
Theorem 4.1. Assume that r ≥ 2τ − 1. Let C be a connected component of the
input graph. If |V (C)| < r, then we have a trivial no-instance. Otherwise, we
construct a connected dominating set D of C with size exactly r, which works
as a unit dominating C. We initialize D with a non-empty twin cover of size at
most τ . Note that such a set can be found in O∗(1.2738τ ) time: if C is a complete
graph, then we pick an arbitrary vertex v ∈ V (C) and set D = {v}; otherwise,
just find a minimum twin cover. Since C is connected, D is a dominating set of
C. If C[D] is not connected, we update D with a new element v adjacent to at
least two connected components of C[D]. Since |D| ≤ τ at the beginning, we can
repeat this update at most τ − 1 times, and after that C[D] becomes connected
and |D| ≤ 2τ − 1 ≤ r. We finally add r − |D| vertices arbitrarily and obtain a
desired set. ut

In the next subsection, we first present an algorithm for 2-Grouped Domi-
nating Set parameterized by vertex cover number, which gives a basic scheme
of our dynamic programming based algorithms. We then see how we extend the
idea to 3-Grouped Dominating Set. As explained above, these algorithms
are based on dynamic programming (DP), and they compute certain function
values on partitions of a vertex cover. Unfortunately, it is not obvious how to
extend the strategy to general r. Instead, we consider nested partitions of a ver-
tex cover for DP tables, which makes the running time a little slower though. In
the last subsection, we see how a vertex cover can be replaced with a twin cover
in the same running time in terms of order.

4.1 Algorithms parameterized by vertex cover number

Algorithm for 2-Grouped Dominating Set We first present an algorithm
for the simplest case r = 2, i.e., the paired dominating set. Let G = (V,E) be
a graph and J be a vertex cover of G. Then, I = V \ J is an independent set.
The basic scheme of our algorithm follows the algorithm for the dominating set
problem by Liedloff [29], which focuses on a partition of a given vertex cover
J . For a minimum dominating set D, the vertex cover J is partitioned into
three parts: J ∩D; (J \D) ∩ N(J ∩D), that is, the vertices in J \D that are
dominated by J ∩D; and J \N [J ∩D], that is, the remaining vertices. Note that
the remaining vertices in J \N [J ∩D] are dominated by I ∩D. Once J ∩D is
fixed, a minimum I ∩D is found by solving the set cover problem that reflects
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Fig. 3. Partitioning a vertex cover into three parts.

the condition that J \ N [J ∩ D] must be dominated by I ∩ D. The algorithm
computes a minimum dominating set by solving set cover problems defined by
all candidates of J ∩D.

To adjust the algorithm to 2-Grouped Dominating Set, we need to handle
the condition that a dominating set contains a perfect matching.

For each subset JD ⊆ J , we find a subset ID ⊆ I (if any exists) of the
minimum size such that JD ∪ ID can form a 2-grouped dominating set. Let X
and Y be disjoint subsets of J , and let I = {v1, v2, . . . , v|I|} (see Fig. 3). For
j = 0, . . . , |I|, we define an auxiliary table A[X,Y, j] as the minimum size of
I ′ ⊆ {v1, v2, . . . , vj} that satisfies the following conditions.

1. Y ⊆ N(I ′),

2. I ′∪X has a partition D(2) = {D(2)
1 , D

(2)
2 , . . . , D

(2)
p } with p ≤ k such that for

all i = 1, . . . , p, |D(2)
i | = 2 and G[D

(2)
i ] is connected.

We set A[X,Y, j] =∞ if no I ′ ⊆ {v1, v2, . . . , vj} satisfies the conditions. We can
easily compute A[X,Y, 0] ∈ {0,∞} as A[X,Y, 0] = 0 if and only if G[X] has a
perfect matching and Y = ∅. Now the following recurrence formula computes A:

A[X,Y, j + 1] = min

{
A[X,Y, j], min

u∈N(vj+1)∩X
A[X \ {u}, Y \N(vj+1), j] + 1

}
.

The recurrence finds the best way under the condition that we can use vertices
from v1, v2, . . . , vj , vj+1 in a dominating set: not using vj+1, or pairing vj+1 with
u ∈ N(vj+1) ∩ X. We can compute all entries of A in O∗(3|J|) time in a DP
manner as there are only 3|J| ways for choosing disjoint subsets X and Y of J .

Now we compute the minimum number of units in a 2-grouped dominating set
of G (if any exists) by looking up some appropriate table entries of A. Let D be a
2-grouped dominating set of G with JD = J∩

⋃
D and ID = I∩

⋃
D. Since

⋃
D is

a dominating set with no isolated vertex in G[
⋃
D], JD dominates all vertices in

I. Let JY = J\N [JD]. Then the definition of A implies that A[JD, JY , |I|] = |ID|.
Conversely, if X ⊆ J dominates I, Y = J \ N [X], and A[X,Y, |I|] 6= ∞, then
there is a 2-grouped dominating set with (|X|+A[X,Y, |I|])/2 units. Therefore,
the minimum number of units in a 2-grouped dominating set of G is min{(|X|+
A[X, J \ N [X], |I|])/2 | X ⊆ J and I ⊆ N(X)}, which can be computed in
O∗(2|J|) time given the table A. Thus the total running time of the algorithm is
O∗(3|J|).
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Algorithm for 3-Grouped Dominating Set Next, we consider the case
r = 3, i.e., the trio dominating set. Let G = (V,E) be a graph, J be a vertex
cover of G, and I = V \J . The basic idea is the same as the case r = 2 except that
we partition the vertex cover into four parts in the DP, and thus the recurrence
formula for A is different. In the DP, the vertex cover J is partitioned into four
parts depending on the partial solution corresponding to each table entry.

For each subset JD ⊆ J , we find a subset ID ⊆ I (if any exists) of the
minimum size such that JD∪ID can form a 3-grouped dominating set. Intuitively,
the set F represents partial units that will later be completed to full units. Let X,
F , and Y be disjoint subsets of J , and let I = {v1, v2, . . . , v|I|}. For j = 0, . . . , |I|,
we define A[X,F, Y, j] as the minimum size of I ′ ⊆ {v1, v2, . . . , vj} that satisfies
the following conditions:

1. Y ⊆ N(I ′),
2. I ′ can be partitioned into two parts I ′2, I

′
3 satisfying the following conditions:

– I ′2∪F has a partition D(2) = {D(2)
1 , D

(2)
2 , . . . , D

(2)
p } with p ≤ k such that

for all i = 1, . . . , p, |D(2)
i | = 2 and G[D

(2)
i ] is connected.

– I ′3 ∪ X has a partition D(3) = {D(3)
1 , D

(3)
2 , . . . , D

(3)
q } with q ≤ k such

that for all i = 1, . . . , q, |D(3)
i | = 3 and G[D

(3)
i ] is connected.

We set A[X,F, Y, j] = ∞ if no I ′ ⊆ {v1, v2, . . . , vj} satisfies the conditions. We
can easily compute A[X,F, Y, 0] ∈ {0,∞} as A[X,F, Y, 0] = 0 if and only if
F = Y = ∅ and G[X] admits a partition into connected graphs of 3-vertices.
The last condition can be checked in O(2|J| · |J |3) time for all X ⊆ J by re-
cursively considering all possible ways for removing three vertices from X; that
is, A[X, ∅, ∅, 0] = min{x,y,z}∈(X3 )A[X \ {x, y, z}, ∅, ∅, 0] if |X| ≥ 3. The following

recurrence formula holds: A[X,F, Y, j + 1] = min{f1, f2, f3, f4}, where

f1 = A[X,F, Y, j],

f2 = min
α,β∈X,|E(G[{α,β,vj+1}])|≥2

A[X \ {α, β}, F, Y \ {N({α, β, vj+1})}, j] + 1,

f3 = min
α∈X∩N(vj+1)

A[X \ {α}, F ∪ {α}, Y \N(vj+1), j] + 1,

f4 = min
β∈F∩N(vj+1)

A[X,F \ {β}, Y \N({β, vj+1}), j] + 1.

The four options f1, f2, f3, and f4 assume different ways of the role of vj+1 and
compute the optimal value under the assumptions (see Fig. 4). Concretely, f1

reflects the case when vj+1 does not belong to the solution, and f2 reflects the
case when vj+1 belongs to the solution together with two vertices in J in a
connected way. In f3, it reflects that vj+1 forms a triple in the solution with a
vertex in F and a vertex in Ij . In f4, it reflects that vj+1 currently forms a pair
in J and will form a triple with a vertex in I \ Ij . We can compute all entries of
A in O∗(4|J|) time as the number of combinations of three disjoint sets X,F, Y
of J is 4|J|.

Similarly to the previous case of r = 2, we can compute the minimum number
of units in a 3-grouped dominating set as min{(|X|+ A[X, ∅, J \N [X], |I|])/3 |
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Fig. 4. How vj+1 is used. (The white vertices belong to a dominating set.)

X ⊆ J and I ⊆ N(X)}. Given the table A, this can be done in O∗(2|J|) time.
Thus the total running time of the algorithm is O∗(4|J|).

Algorithm for r-Grouped Dominating Set We now present our algorithm
for general r ≥ 4. Let G = (V,E) be a graph, J be a vertex cover of G, and
I = V \J . This case still allows an algorithm based on a similar framework to the
previous cases, though connected components of general r can be built up from
smaller fragments of connected components; this yields an essential difference
that worsens the running time. In the DP, the vertex cover J is partitioned into
r+ 1 parts depending on the partial solution corresponding to each table entry,
and then some of the parts in the partition are further partitioned into smaller
subsets. In other words, each table entry corresponds to a nested partition of
the vertex cover.

As in the previous algorithms, for each subset JD ⊆ J , we find a subset
ID ⊆ I (if any exists) of the minimum size such that JD ∪ ID can form an r-
grouped dominating set. Let X, F (r−1), . . . , F (3), F (2), Y be disjoint subsets of
J , and let I = {v1, v2, . . . , v|I|}. For i = 2, . . . , r − 1, let F (i) be a partition of

F (i), where F (i) = {F (i)
1 , F

(i)
2 , . . . , F

(i)

|F(i)|}. The number of such nested partitions

(X,F (r−1), . . . ,F (2), Y ) is at most (r + 1)|J||J ||J|. For j = 0, . . . , |I|, we define
A[X,F (r−1), . . . ,F (2), Y, j] as the minimum size of I ′ ⊆ {v1, v2, . . . , vj} that
satisfies the following conditions:

1. Y ⊆ N(I ′),
2. I ′ can be partitioned into r − 1 parts I ′2, I

′
3, . . . , I

′
r satisfying the following

conditions:
– for i = 2, . . . , r−1, I ′i∪F (i) has a partitionD(i) = {D(i)

1 , D
(i)
2 , . . . , D

(i)

|F(i)|}

such that for all p = 1, . . . , |F (i)|, D(i)
p includes at least one vertex of I ′

and is a superset of F
(i)
p , and |D(i)

p | = i and G[D
(i)
p ] is connected.
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Fig. 5. A nested partition of a vertex cover.

– I ′r ∪ X has a partition D(r) = {D(r)
1 , D

(r)
2 , . . . , D

(r)
q } such that for all

i = 1, . . . , q, |D(r)
i | = r and G[D

(r)
i ] is connected.

We set A[X,F (r−1), . . . ,F (2), Y, j] = ∞ if no I ′ ⊆ {v1, v2, . . . , vj} satisfies the
conditions. We can compute A[X,F (r−1), . . . ,F (2), Y, 0], which is 0 or ∞, as it
is 0 if and only if F (r−1) = · · · = F (2) = Y = ∅ and G[X] admits a partition into
connected graphs of r vertices. The last condition can be checked in O(|J ||J|)
time for all X ⊆ J by checking all possible partitions of J .

Assume that all entries of A with j ≤ c for some c are computed. Since the
degree of vc+1 is at most |J |, the number of possible ways of how vc+1 extends
a partial solution is at most 2|J|. Thus from each table entry of A with j = c,
we obtain at most 2|J| candidates of the table entries with j = c + 1. Thus, we
can compute all entries of A in O∗(2|J|(r + 1)|J||J ||J|) time.

Given A, we can compute the minimum number of units in an r-grouped
dominating set as min{(|X| + A[X, ∅, . . . , ∅, J \ N [X], |I|])/r | X ⊆ J and I ⊆
N(X)}. Again this takes only O∗(2|J|) time. Thus the total running time of the
algorithm is O∗(2|J|(r + 1)|J||J ||J|) = O∗((2ν(r + 1))ν).

4.2 Algorithms parameterized by twin cover number

In this subsection, we show that the algorithms presented above still work when
the parameter ν in the running time is replaced with twin cover number τ .
To show this, we prove the following lemma. It says that twin-edges do not
contribute to the connectivity of units for some minimum r-grouped dominating
sets and can be removed from the graph. As a result, the vertex cover number
can be replaced with the twin cover number.

Lemma 4.3. Let G be a graph and K be a twin cover of G. If G has an r-
grouped dominating set, then there exists a minimum r-grouped dominating set
such that every unit has at least one vertex in K.

Proof. Let G = (V,E) be a graph, and K be a twin cover of G. Suppose
that a minimum r-grouped dominating set D exists and one of its units D =
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{v1, v2, . . . , vr} has no vertex in K. Since K is a twin cover, N [v1] = N [v2] =
· · · = N [vr] holds. Let KD = K ∩ N(v1). Then, there is at least one vertex x
in KD such that x /∈

⋃
D. Suppose to the contrary that there is no such x,

and thus all vertices in KD belong to
⋃
D. This implies that no vertex is domi-

nated only by D and that D itself is dominated by some vertices in KD. Thus,
D \ {D} is an r-grouped dominating set. This contradicts the minimality of D.
Let D′ = D \{v1}∪{x}, then D′ = D\{D}∪{D′} is also a minimum r-grouped
dominating set of G (see Fig. 6). By repeating this process, we can obtain a
minimum r-grouped dominating set such that every unit has at least one vertex
in K. ut

Fig. 6. An example for exchange. White vertices belong to a dominating set.

5 Beyond Vertex Cover and Twin Cover

In this section, we further explore the parameterized complexity of r-Grouped
Dominating Set with respect to structural graph parameters that generalize
vertex cover number and twin cover number. We show that if we do not try to
optimize the running time of algorithms, then we can use known algorithmic
meta-theorems that automatically give fixed-parameter algorithms parameter-
ized by certain graph parameters.

For the sake of brevity, we define only the parameters for which we need their
definitions. For example, we do not need the definition of treewidth for applying
the meta-theorem described below. On the other hand, to contrast the results
here with the ones in the previous sections, it is important to see the picture
of the relationships between the parameters. See Fig. 1 for the hierarchy of the
graph parameters we deal with.

Roughly speaking, the algorithmic meta-theorems we use here say that if a
problem can be expressed in a certain logic (e.g., FO, MSO1, or MSO2), then the
problem is fixed-parameter tractable parameterized by a certain graph parame-
ter (e.g., twin-width, treewidth, or clique-width). Such theorems are extremely
powerful and used widely for designing fixed-parameter algorithms [27]. On the
other hand, the generality of the meta-theorems unfortunately comes with very
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high dependency on the parameters [19]. When our target parameter is ver-
tex cover number, the situation is slightly better, but still a double-exponential

22Ω(ν)

lower bound of the parameter dependency is known under ETH [28]. This
implies that our “slightly superexponential” 2O(τ log τ) algorithm in Section 4
cannot be obtained by applications of known meta-theorems.

In the rest of this section, we first introduce FO, MSO1, and MSO2 on graphs.
We then observe that the problem can be expressed in FO when r and k are
part of the parameter and in MSO2 when r is part of the parameter. These
observations combined with known meta-theorems immediately imply that r-
Grouped Dominating Set is fixed-parameter tractable when

– parameterized by r + k on nowhere dense graph classes;
– parameterized by r+k+twin-width if a contraction sequence of the minimum

width is given as part of the input; and
– parameterized by r + treewidth.

We then consider the parameter k + treewidth and show that this case is
intractable. More strongly, we show that r-Grouped Dominating Set is W[1]-
hard when the parameter is k + treedepth + feedback vertex set number.

We finally consider the parameter modular-width, a generalization of twin
cover number, and show that r-Grouped Dominating Set parameterized by
modular-width is fixed-parameter tractable.

5.1 Results based on algorithmic meta-theorems

The first-order logic on graphs (FO) allows variables representing vertices of
the graph under consideration. The atomic formulas are the equality x = y of
variables and the adjacency E(x, y) meaning that {x, y} ∈ E. The FO formulas
are defined recursively from atomic formulas with the usual Boolean connectives
(¬, ∧, ∨,⇒,⇔), and quantification of variables (∀, ∃). We also use the existential
quantifier with a dot (∃̇) to quantify distinct objects. For example, ∃̇a, b : φ means
∃a, b : (a 6= b)∧φ. We write G |= φ if G satisfies (or models) φ. Given a graph G
and an FO formula φ, FO Model Checking asks whether G |= φ.

It is straightforward to express the property of having an r-grouped domi-
nating set of k units with an FO formula whose length depends only on r + k:

φr,k = ∃̇v1, v2, . . . , vrk :

dominating(v1, . . . , vrk) ∧
∧

0≤i≤k−1

connected(vir+1, . . . , vir+r),

where dominating(· · ·) is a subformula expressing that the rk vertices form a
dominating set and connected(· · ·) is the one expressing that the r vertices
induce a connected subgraph (see Section 5.4 for the expressions of the sub-
formulas). This implies that r-Grouped Dominating Set parameterized by
r+k is fixed-parameter tractable on graph classes on which FO Model Check-
ing parameterized by the formula length |φ| is fixed-parameter tractable. Such
graph classes include nowhere dense graph classes [23] and graphs of bounded
twin-width (given with so called contraction sequences) [5].
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Corollary 5.1. r-Grouped Dominating Set parameterized by r+ k is fixed-
parameter tractable on nowhere dense graph classes.

Corollary 5.2. r-Grouped Dominating Set parameterized by r+k+twin-width
is fixed-parameter tractable if a contraction sequence of the minimum width is
given as part of the input.

The monadic second-order logic on graphs (MSO1) is an extension of FO that
additionally allows variables representing vertex sets and the inclusion predicate
X(x) meaning that x ∈ X. MSO2 is a further extension of MSO1 that also allows
edge variables, edge-set variables, and an atomic formula I(e, x) representing the
edge-vertex incidence relation. Given a graph G and an MSO1 (MSO2, resp.)
formula φ(X) with a free set variable X, MSO1 (MSO2, resp.) Optimization
asks to find a minimum set S such that G |= φ(S).

It is not difficult to express the property of a vertex set being the union
of r-units of a r-grouped dominating set with an MSO2 formula whose length
depending only on r:4

ψr(X) = dominating(X) ∧
(∃F ⊆ E : span(F,X) ∧ (∀C ⊆ X : cc(F,C)⇒ sizer(C))) ,

where dominating(X) is a subformula expressing that X is a dominating set,
span(F,X) is the one expressing that X is the set of all endpoints of the edges in
F , cc(F,C) expresses that C is the vertex set of a connected component of the
subgraph induced by F , and sizer(C) means that C contains exactly r elements
(again, see Section 5.4 for the expressions of the subformulas). Since MSO2 Op-
timization parameterized by treewidth is fixed-parameter tractable [1,6,11], we
have the following result.

Corollary 5.3. r-Grouped Dominating Set parameterized by r + treewidth
is fixed-parameter tractable.

5.2 Hardness parameterized by k + treewidth

Now the natural question regarding treewidth and r-Grouped Dominating
Set would be the complexity parameterized by k + treewidth. Unfortunately,
this case is W[1]-hard even if treewidth is replaced with a possibly much larger
parameter pathwidth+feedback vertex set number and the graphs are restricted
to be planar. Furthermore, if the planarity is not required, we can replace path-
width in the parameter with treedepth.

Theorem 5.4. r-Grouped Dominating Set parameterized by k+pathwidth+
feedback vertex set number is W[1]-hard on planar graphs.

4 Note that there is no equivalent MSO1 formula of length depending only on r. This
is because G |= ψ2(V ) expresses the property of having a perfect matching, for which
an MSO1 formula does not exist (see e.g., [12]).
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Proof. Given a graph G = (V,E) and an integer r ≥ 2, Equitable Con-
nected Partition asks whether there exists a partition of V into k = |V |/r sets
V1, . . . , Vk such that G[Vi] is connected and |Vi| = r for 1 ≤ i ≤ k. It is known
that Equitable Connected Partition parameterized by k + pathwidth +
feedback vertex set number is W[1]-hard even on planar graphs [18]. We reduce
this problem to ours.

Let 〈G = (V,E), r〉 be an instance of Equitable Connected Partition.
To each vertex v of G, we attach a new vertex of degree 1, which we call a
pendant at v. This modification does not change the feedback vertex number
and may increase the pathwidth by at most 1 (see e.g., [2, Lemma A.2]). Let
H be the resultant graph, which is planar. To prove the lemma, it suffices to
show that 〈H, k〉 is a yes-instance of r-Grouped Dominating Set if and only
if 〈G, r〉 is a yes-instance of Equitable Connected Partition.

To prove the if direction, assume that 〈G, r〉 is a yes-instance of Equitable
Connected Partition and that V1, . . . , Vk certificate it. Clearly, {V1, . . . , Vk}
is an r-grouped dominating set of H.

To prove the only-if direction, assume that H has an r-grouped dominating
set D with at most k units. Let v ∈ V and p be the pendant at v. Observe
that

⋃
D contains exactly one of v and p since it needs at least one of them for

dominating p and |
⋃
D| ≤ rk = |V |. Furthermore, the assumption r ≥ 2 implies

that
⋃
D cannot contain p as it has no neighbor other than v. This implies that⋃

D = V and that D contains exactly |V |/r = k units. Therefore, the family D is
a certificate that 〈G, r〉 is a yes-instance of Equitable Connected Partition.
ut

It is known that on general (not necessarily planar) graphs, Equitable Con-
nected Partition parameterized by k+treedepth+feedback vertex set number
is W[1]-hard [22]. Since adding pendants to all vertices increases treedepth by
at most 1 (see e.g., [32]), the same reduction shows the following hardness.

Theorem 5.5. r-Grouped Dominating Set parameterized by k+treedepth+
feedback vertex set number is W[1]-hard.

5.3 Fixed-parameter tractability parameterized by modular-width

Let G = (V,E) be a graph. A set M ⊆ V is a module if for each v ∈ V \M , either
M ⊆ N(v) or M ∩N(v) = ∅ holds. The modular-width of G, denoted mw(G), is
the minimum integer k such that either |V | ≤ k or there exists a partition of V
into at most k modules M1, . . . ,Mk′ of G such that each G[Mi] has modular-
width at most k. It is known that the modular-width of a graph and a recursive
partition certificating it can be computed in linear time [14,24,35].

Observe that if V is partitioned into modules M1, . . . ,Mk of G, then for two
distinct modules Mi and Mj , we have either no or all possible edges between
them. If there are all possible edges between Mi and Mj , then we say that Mi

and Mj are adjacent.

Theorem 5.6. r-Grouped Dominating Set parameterized by modular-width
is fixed-parameter tractable.



20 T. Hanaka et al.

Proof. Let 〈G = (V,E), k〉 be an instance of r-Grouped Dominating Set.
We only consider the case of r ≥ 2 since the other case of r = 1 is known (see
[13,20]). We may assume that G is connected since otherwise we can solve the
problem on each connected component separately. We also assume that G has at
least r vertices as otherwise the problem is trivial. Let M1, . . . ,Mµ be a partition
of V into modules with 2 ≤ µ ≤ mw(G). For each module Mi, there is at least
one adjacent module Mj as G is connected.

We first assume that r ≥ µ. Let D ⊆ V be an arbitrary set of size r that
takes at least one vertex from each module Mi. Recall that we have either no
or all possible edges between two distinct modules. Thus, the connectivity of G
implies that G[D] is connected and D is a dominating set of G. This implies
that {D} is an r-grouped dominating set with one unit.

Next assume that r < µ. In this case, we show below that if G has an r-
grouped dominating set, then G has an r-grouped dominating set with at most
µ units. This implies that r + k < 2µ, and thus the problem can be solved as
FO Model Checking with a formula of length depending only on µ, which is
fixed-parameter tractable parameterized by µ (see [13,20]).

Before proving the upper bound of k, we show that if G has an r-grouped
dominating set, then there is a minimum one such that no unit is entirely con-
tained in a module Mi. Assume that D is a minimum r-grouped dominating set
of G. If D ⊆Mi holds for some i and D ∈ D, then there is a vertex v in a mod-
ule Mj adjacent to Mi that does not belong to

⋃
D. This is because, otherwise,

D \ {D} is still an r-grouped dominating set. Let u be an arbitrary vertex in D
and set D′ = D \ {u} ∪ {v}. As r ≥ 2, D′ intersects both Mi and Mj . Also we
can see that |D′| = r, D′ is connected (as u is adjacent to all vertices in Mi), and
all vertices dominated by D are dominated by D′ as well. Thus, D \ {D}∪ {D′}
is an r-grouped dominating set. We can repeat this process until we have the
claimed property.

As discussed above, it suffices to show the upper bound k for the number of
units. Let D be a minimum r-grouped dominating set of G such that no unit
is entirely contained in a module Mi. We say that a module Mi is private for a
unit D ∈ D if D is the only one in D that intersects Mi. Suppose to the contrary
that |D| > µ. Then, there is D ∈ D such that no module Mi is private for D.
If a module Mi is adjacent to a module Mj that intersects D, then since Mj

is not private for D, D \ {D} contains a unit intersecting Mj , which dominates
Mi. If a module Mi intersects D, then since D intersects at least two modules
and G[D] is connected, there is a module Mj adjacent to Mi and intersecting D.
Hence, as the previous case, D \ {D} contains a unit dominating Mi. Therefore,
we can conclude that D \ {D} is an r-grouped dominating set. This contradicts
the minimality of D. ut

5.4 Auxiliary subformulas

Here we present FO or MSO2 expressions of some of the subformulas in Sec-
tion 5.1. All of them are standard and presented only to show basic ideas.
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The following formulas expressing dominating sets are almost direct transla-
tion of the definition and should be easy to read.

dominating(X) = ∀u ∃v : X(v) ∧ ((u = v) ∨ E(u, v)).

dominating(v1, . . . , vp) = ∀u : (u = v1) ∨ (u = v2) ∨ · · · ∨ (u = vp)

∨ E(u, v1) ∨ E(u, v2) ∨ · · · ∨ E(u, vp).

The connectivity of G[X] is a little bit tricky to state. We state that for each
nonempty proper subset Y of X, there is an edge between Y and X \ Y . See
e.g., [15] for the full expression of connected. The FO version of connected can
be expressed based on the same idea but the length of the formula depends on
the number r of vertices it can take (which is fine for us as r is part of the input
when we use this formula). In [15], an MSO2 formula expressing the connectivity
of the graph induced by an edge set is also presented. We call it connectedE and
use it below.

Recall that span(F,X) expresses that X is the set of all endpoints of the
edges in F and that cc(F,C) expresses that C is the vertex set of a connected
component of the subgraph induced by F . They can be stated as follows:

span(F,X) = ∀v : X(v)⇔ (∃e : F (e) ∧ I(e, v)),

cc(F,C) = ∃F ′ : (F ′ ⊆ F ) ∧ span(F ′, C) ∧ connectedE(F ′)

∧ (∀F ′′ : (F ′ ⊆ F ′′ ⊆ F ) ∧ ¬connectedE(F ′′)),

where the inclusion relation F ⊆ F ′ can be stated as ∀e : F (e)⇒ F ′(e).
Finally, when r is part of the parameter, sizer(C) meaning that |C| = r can

be stated as follows:

sizer(C) = ∃̇v1, . . . , vr :
∧

1≤i≤r

C(vi) ∧

¬∃v : C(v) ∧
∧

1≤i≤r

v 6= vi

 .
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