Skip to main content

Grouped Domination Parameterized by Vertex Cover, Twin Cover, and Beyond

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2023)

Abstract

A dominating set S of graph G is called an r-grouped dominating set if S can be partitioned into \(S_1,S_2,\ldots ,S_k\) such that the size of each unit \(S_i\) is r and the subgraph of G induced by \(S_i\) is connected. The concept of r-grouped dominating sets generalizes several well-studied variants of dominating sets with requirements for connected component sizes, such as the ordinary dominating sets (\(r=1\)), paired dominating sets (\(r=2\)), and connected dominating sets (r is arbitrary and \(k=1\)). In this paper, we investigate the computational complexity of r -Grouped Dominating Set, which is the problem of deciding whether a given graph has an r-grouped dominating set with at most k units. For general r, r -Grouped Dominating Set is hard to solve in various senses because the hardness of the connected dominating set is inherited. We thus focus on the case in which r is a constant or a parameter, but we see that r -Grouped Dominating Set for every fixed \(r>0\) is still hard to solve. From the observations about the hardness, we consider the parameterized complexity concerning well-studied graph structural parameters. We first see that r -Grouped Dominating Set is fixed-parameter tractable for r and treewidth, which is derived from the fact that the condition of r-grouped domination for a constant r can be represented as monadic second-order logic (\(\textsf{MSO}_{2}\)). This fixed-parameter tractability is good news, but the running time is not practical. We then design an \(O^*(\min \{(2\tau (r+1))^{\tau },(2\tau )^{2\tau }\})\)-time algorithm for general \(r\ge 2\), where \(\tau \) is the twin cover number, which is a parameter between vertex cover number and clique-width. For paired dominating set and trio dominating set, i.e., \(r \in \{2,3\}\), we can speed up the algorithm, whose running time becomes \(O^*((r+1)^\tau )\). We further argue the relationship between FPT results and graph parameters, which draws the parameterized complexity landscape of r -Grouped Dominating Set.

Partially supported by JSPS KAKENHI Grant Numbers JP17H01698, JP17K19960, JP18H04091, JP20H05793, JP20H05967, JP21K11752, JP21H05852, JP21K17707, JP21K19765, and JP22H00513.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The \(O^*\) notation suppresses the polynomial factors of the input size.

  2. 2.

    Note that there is no equivalent \(\textsf{MSO}_{1}\) formula of length depending only on r. This is because \(G \models \psi _{2}(V)\) expresses the property of having a perfect matching, for which an \(\textsf{MSO}_{1}\) formula does not exist (see e.g., [10]).

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnet, É., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width I: tractable FO model checking. J. ACM 69(1), 1–46 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7(5 &6), 555–581 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, L., Lu, C., Zeng, Z.: Hardness results and approximation algorithms for (weighted) paired-domination in graphs. Theor. Comput. Sci. 410(47), 5063–5071 (2009)

    Article  MATH  Google Scholar 

  7. Chen, L., Lu, C., Zeng, Z.: A linear-time algorithm for paired-domination problem in strongly chordal graphs. Inf. Process. Lett. 110(1), 20–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, L., Lu, C., Zeng, Z.: Labelling algorithms for paired-domination problems in block and interval graphs. J. Comb. Optim. 19(4), 457–470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  11. Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0017474

    Chapter  Google Scholar 

  12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  13. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algorithms 18(2) (2022)

    Google Scholar 

  14. Desormeaux, W.J., Haynes, T.W., Henning, M.A.: Paired domination in graphs. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.) Topics in Domination in Graphs. DM, vol. 64, pp. 31–77. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51117-3_3

    Chapter  MATH  Google Scholar 

  15. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Log. 130(1–3), 3–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ganian, R.: Improving vertex cover as a graph parameter. Discret. Math. Theor. Comput. Sci. 17(2), 77–100 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Gima, T., Otachi, Y.: Extended MSO model checking via small vertex integrity. In: 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 248, pp. 20:1–20:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022)

    Google Scholar 

  18. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. J. ACM 64(3), 1–32 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)

    Article  MATH  Google Scholar 

  20. Hanaka, T., Ono, H., Otachi, Y., Uda, S.: Grouped domination parameterized by vertex cover, twin cover, and beyond. arXiv preprint arXiv:2302.06983 (2023)

  21. Haynes, T.W., Slater, P.J.: Paired-domination and the paired-domatic number. Congressus Numerantium 65–72 (1995)

    Google Scholar 

  22. Haynes, T.W., Slater, P.J.: Paired-domination in graphs. Networks 32(3), 199–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kreutzer, S.: Algorithmic meta-theorems. In: Esparza, J., Michaux, C., Steinhorn, C. (eds.) Finite and Algorithmic Model Theory, London Mathematical Society Lecture Note Series, vol. 379, pp. 177–270. Cambridge University Press (2011)

    Google Scholar 

  24. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liedloff, M.: Finding a dominating set on bipartite graphs. Inf. Process. Lett. 107(5), 154–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, C.C., Ku, K.C., Hsu, C.H.: Paired-domination problem on distance-hereditary graphs. Algorithmica 82(10), 2809–2840 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nešetřil, J., Ossona de Mendez, P.: Sparsity. AC, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27875-4

    Book  MATH  Google Scholar 

  28. Pradhan, D., Panda, B.: Computing a minimum paired-dominating set in strongly orderable graphs. Discret. Appl. Math. 253, 37–50 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tripathi, V., Kloks, T., Pandey, A., Paul, K., Wang, H.-L.: Complexity of paired domination in AT-free and planar graphs. In: Balachandran, N., Inkulu, R. (eds.) CALDAM 2022. LNCS, vol. 13179, pp. 65–77. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95018-7_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Ono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanaka, T., Ono, H., Otachi, Y., Uda, S. (2023). Grouped Domination Parameterized by Vertex Cover, Twin Cover, and Beyond. In: Mavronicolas, M. (eds) Algorithms and Complexity. CIAC 2023. Lecture Notes in Computer Science, vol 13898. Springer, Cham. https://doi.org/10.1007/978-3-031-30448-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30448-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30447-7

  • Online ISBN: 978-3-031-30448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics