Abstract
Hierarchical Identity Based Encryption (HIBE) is a well studied, versatile tool used in many cryptographic protocols. Yet, since the performance of all known HIBE constructions is broadly considered prohibitive, some real-world applications avoid relying on HIBE at the expense of security. A prominent example for this is secure messaging: Strongly secure messaging protocols are provably equivalent to Key-Updatable Key Encapsulation Mechanisms (KU-KEMs; Balli et al., Asiacrypt 2020); so far, all KU-KEM constructions rely on adaptive unbounded-depth HIBE (Poettering and Rösler, Jaeger and Stepanovs, both CRYPTO 2018). By weakening security requirements for better efficiency, many messaging protocols dispense with using HIBE.
In this work, we aim to gain better efficiency without sacrificing security. For this, we observe that applications like messaging only need a restricted variant of HIBE for strong security. This variant, that we call Unique-Path Identity Based Encryption (UPIBE), restricts HIBE by requiring that each secret key can delegate at most one subordinate secret key. However, in contrast to fixed secret key delegation in Forward-Secure Public Key Encryption, the delegation in UPIBE, as in HIBE, is uniquely determined by variable identity strings from an exponentially large space. We investigate this mild but surprisingly effective restriction and show that it offers substantial complexity and performance advantages.
More concretely, we generically build bounded-depth UPIBE from only bounded-collusion IBE in the standard model; and we generically build adaptive unbounded-depth UPIBE from only selective bounded-depth HIBE in the random oracle model. These results significantly extend the range of underlying assumptions and efficient instantiations. We conclude with a rigorous performance evaluation of our UPIBE design. Beyond solving challenging open problems by reducing complexity and improving efficiency of KU-KEM and strongly secure messaging protocols, we offer a new definitional perspective on the bounded-collusion setting.
The full version [38] of this article is available in the IACR eprint archive as article 2023/248, at https://eprint.iacr.org/2023/248.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
E.g., the chronological succession of presidents in a particular state or a ranking list that results from a competition.
- 2.
- 3.
An alternative approach from standard assumptions would be to rely on the fully secure IBE from CDH by Garg and Döttling [17]. Unfortunately, this will not yield a practical instantiation.
- 4.
With the exposed UPIBE decapsulation key, the adversary can compute all subsequent delegations and decapsulations itself, so further exposures are meaningless.
- 5.
Branching here means that for two identity strings \( id , id ^*\) with \(\ell ^*=\min (| id |,| id ^*|)\), strings \( id \) and \( id ^*\) differ in at least one of the first \(\ell ^*\) bits.
- 6.
E.g., the number of conducted key delegations in the bidirectional messaging protocol in [36, see page 22] is upper-bounded by the maximal number of ciphertexts that cross the wire during a round-trip time (i.e., at most a few dozens).
- 7.
Consider asymmetric communication for which ciphertexts should be small and encapsulation keys can be large: E.g., sending large encapsulation keys on hardware memory from time to time via resupply flights to the International Space Station, and sending ciphertexts over the air back to earth.
- 8.
For clarity in our explanation, we slightly deviate from the original BTE-to-FS-PKE idea by Canetti et al. [8]: We do not use all nodes in the BTE tree as epoch starting points but only nodes in the lowest level of this BTE component.
- 9.
We would sample a random key k and derive \((r_0,\ldots ,r_{l-1},k')=G(k)\) from a random oracle G and encapsulate \(k_i\) with randomness \(r_i\) for the i’th instance such that \(K=k_0\oplus \ldots \oplus k_{l-1}\) and then use \(k'\) as the overall encapsulation key.
- 10.
- 11.
References
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28
Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_5
Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally secure ratcheting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 621–650. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_21
Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_14
Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26
Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13
Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16
Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_13
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27
Cini, V., Ramacher, S., Slamanig, D., Striecks, C.: CCA-secure (Puncturable) KEMs from encryption with non-negligible decryption errors. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 159–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_6
Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and applications to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_14
Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum, J. (ed.) ACM CCS-9 DRM Workshop 2002 (2002)
Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 254–285. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_9
Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_5
Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_13
Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18
Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS, vol. 11689, pp. 343–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26834-3_20
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34
Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_27
Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_34
Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 190–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_7
Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-collusion IBE from key homomorphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_32
Gong, J., Cao, Z., Tang, S., Chen, J.: Extended dual system group and shorter unbounded hierarchical identity based encryption. Des. Codes Cryptogr. 80(3), 525–559 (2016)
Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable encryption. In: 2015 IEEE Symposium on Security and Privacy, pp. 305–320. IEEE Computer Society Press, May 2015. https://doi.org/10.1109/SP.2015.26
Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29
Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_18
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_31
Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state compromise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_2
Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guarantees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_6
Jost, D., Maurer, U., Mularczyk, M.: A unified and composable take on ratcheting. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 180–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_7
Katz, J.: Binary tree encryption: constructions and applications. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 1–11. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6_1
Langrehr, R., Pan, J.: Unbounded HIBE with tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 129–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_5
Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_20
Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. Cryptology ePrint Archive, Report 2018/296 (2018). eprint.iacr.org/2018/296
Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_1
Rösler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption with applications to strongly secure messaging. Cryptology ePrint Archive, Paper 2023/248 (2023). eprint.iacr.org/2023/248
Rösler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption with applications to strongly secure messaging. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, LNCS 14008, pp. 3–34. Springer, Heidelberg (2023)
Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5
Tessaro, S., Wilson, D.A.: Bounded-collusion identity-based encryption from semantically-secure public-key encryption: generic constructions with short ciphertexts. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_15
Acknowledgements
This work was supported by the ECSEL Joint Undertaking (JU) under grant agreement No 826610 (Comp4Drones) and by the Austrian Science Fund (FWF) and netidee SCIENCE under grant agreement P31621-N38 (Profet).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Rösler, P., Slamanig, D., Striecks, C. (2023). Unique-Path Identity Based Encryption with Applications to Strongly Secure Messaging. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14008. Springer, Cham. https://doi.org/10.1007/978-3-031-30589-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-30589-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30588-7
Online ISBN: 978-3-031-30589-4
eBook Packages: Computer ScienceComputer Science (R0)