Skip to main content

Unique-Path Identity Based Encryption with Applications to Strongly Secure Messaging

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2023 (EUROCRYPT 2023)

Abstract

Hierarchical Identity Based Encryption (HIBE) is a well studied, versatile tool used in many cryptographic protocols. Yet, since the performance of all known HIBE constructions is broadly considered prohibitive, some real-world applications avoid relying on HIBE at the expense of security. A prominent example for this is secure messaging: Strongly secure messaging protocols are provably equivalent to Key-Updatable Key Encapsulation Mechanisms (KU-KEMs; Balli et al., Asiacrypt 2020); so far, all KU-KEM constructions rely on adaptive unbounded-depth HIBE (Poettering and Rösler, Jaeger and Stepanovs, both CRYPTO 2018). By weakening security requirements for better efficiency, many messaging protocols dispense with using HIBE.

      In this work, we aim to gain better efficiency without sacrificing security. For this, we observe that applications like messaging only need a restricted variant of HIBE for strong security. This variant, that we call Unique-Path Identity Based Encryption (UPIBE), restricts HIBE by requiring that each secret key can delegate at most one subordinate secret key. However, in contrast to fixed secret key delegation in Forward-Secure Public Key Encryption, the delegation in UPIBE, as in HIBE, is uniquely determined by variable identity strings from an exponentially large space. We investigate this mild but surprisingly effective restriction and show that it offers substantial complexity and performance advantages.

      More concretely, we generically build bounded-depth UPIBE from only bounded-collusion IBE in the standard model; and we generically build adaptive unbounded-depth UPIBE from only selective bounded-depth HIBE in the random oracle model. These results significantly extend the range of underlying assumptions and efficient instantiations. We conclude with a rigorous performance evaluation of our UPIBE design. Beyond solving challenging open problems by reducing complexity and improving efficiency of KU-KEM and strongly secure messaging protocols, we offer a new definitional perspective on the bounded-collusion setting.

The full version [38] of this article is available in the IACR eprint archive as article 2023/248, at https://eprint.iacr.org/2023/248.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    E.g., the chronological succession of presidents in a particular state or a ranking list that results from a competition.

  2. 2.

    We stress that the construction of selective-secure HIBE with unbounded delegations from CDH [17] or from any fully secure IBE [16] is an impressive, yet rather theoretic result.

  3. 3.

    An alternative approach from standard assumptions would be to rely on the fully secure IBE from CDH by Garg and Döttling [17]. Unfortunately, this will not yield a practical instantiation.

  4. 4.

    With the exposed UPIBE decapsulation key, the adversary can compute all subsequent delegations and decapsulations itself, so further exposures are meaningless.

  5. 5.

    Branching here means that for two identity strings \( id , id ^*\) with \(\ell ^*=\min (| id |,| id ^*|)\), strings \( id \) and \( id ^*\) differ in at least one of the first \(\ell ^*\) bits.

  6. 6.

    E.g., the number of conducted key delegations in the bidirectional messaging protocol in [36, see page 22] is upper-bounded by the maximal number of ciphertexts that cross the wire during a round-trip time (i.e., at most a few dozens).

  7. 7.

    Consider asymmetric communication for which ciphertexts should be small and encapsulation keys can be large: E.g., sending large encapsulation keys on hardware memory from time to time via resupply flights to the International Space Station, and sending ciphertexts over the air back to earth.

  8. 8.

    For clarity in our explanation, we slightly deviate from the original BTE-to-FS-PKE idea by Canetti et al. [8]: We do not use all nodes in the BTE tree as epoch starting points but only nodes in the lowest level of this BTE component.

  9. 9.

    We would sample a random key k and derive \((r_0,\ldots ,r_{l-1},k')=G(k)\) from a random oracle G and encapsulate \(k_i\) with randomness \(r_i\) for the i’th instance such that \(K=k_0\oplus \ldots \oplus k_{l-1}\) and then use \(k'\) as the overall encapsulation key.

  10. 10.

    In our concrete setting, for standard-model HIBEs, we use Groth’s pairing-free signature scheme [26] while for HIBEs in the ROM, we use Schnorr signatures [40].

  11. 11.

    Essentially, GCTC [24] improves Lewko [35] towards shorter ciphertext sizes and LP [34] deals with tightness of the Lewko scheme [35], at the expense of rather large encapsulation keys (see \(\gamma \)-factor).

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  2. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_5

    Chapter  Google Scholar 

  3. Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally secure ratcheting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 621–650. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_21

    Chapter  Google Scholar 

  4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_14

    Chapter  Google Scholar 

  5. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26

    Chapter  Google Scholar 

  6. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  8. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

    Chapter  Google Scholar 

  9. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_13

    Chapter  Google Scholar 

  10. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  11. Cini, V., Ramacher, S., Slamanig, D., Striecks, C.: CCA-secure (Puncturable) KEMs from encryption with non-negligible decryption errors. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 159–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_6

    Chapter  Google Scholar 

  12. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and applications to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_14

    Chapter  Google Scholar 

  13. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum, J. (ed.) ACM CCS-9 DRM Workshop 2002 (2002)

    Google Scholar 

  14. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 254–285. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_9

    Chapter  Google Scholar 

  15. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_5

    Chapter  Google Scholar 

  16. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_13

    Chapter  Google Scholar 

  17. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18

    Chapter  Google Scholar 

  18. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS, vol. 11689, pp. 343–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26834-3_20

    Chapter  Google Scholar 

  19. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

    Chapter  Google Scholar 

  20. Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_27

    Chapter  Google Scholar 

  21. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_34

    Chapter  Google Scholar 

  22. Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 190–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_7

    Chapter  Google Scholar 

  23. Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-collusion IBE from key homomorphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_32

    Chapter  Google Scholar 

  24. Gong, J., Cao, Z., Tang, S., Chen, J.: Extended dual system group and shorter unbounded hierarchical identity based encryption. Des. Codes Cryptogr. 80(3), 525–559 (2016)

    Google Scholar 

  25. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable encryption. In: 2015 IEEE Symposium on Security and Privacy, pp. 305–320. IEEE Computer Society Press, May 2015. https://doi.org/10.1109/SP.2015.26

  26. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

    Chapter  Google Scholar 

  27. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_18

    Chapter  Google Scholar 

  28. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  MATH  Google Scholar 

  29. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_31

    Chapter  Google Scholar 

  30. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state compromise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_2

    Chapter  Google Scholar 

  31. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guarantees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_6

    Chapter  Google Scholar 

  32. Jost, D., Maurer, U., Mularczyk, M.: A unified and composable take on ratcheting. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 180–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_7

    Chapter  Google Scholar 

  33. Katz, J.: Binary tree encryption: constructions and applications. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 1–11. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6_1

    Chapter  Google Scholar 

  34. Langrehr, R., Pan, J.: Unbounded HIBE with tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 129–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_5

    Chapter  Google Scholar 

  35. Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_20

    Chapter  MATH  Google Scholar 

  36. Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. Cryptology ePrint Archive, Report 2018/296 (2018). eprint.iacr.org/2018/296

  37. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_1

    Chapter  Google Scholar 

  38. Rösler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption with applications to strongly secure messaging. Cryptology ePrint Archive, Paper 2023/248 (2023). eprint.iacr.org/2023/248

  39. Rösler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption with applications to strongly secure messaging. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, LNCS 14008, pp. 3–34. Springer, Heidelberg (2023)

    Google Scholar 

  40. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22

    Chapter  Google Scholar 

  41. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  42. Tessaro, S., Wilson, D.A.: Bounded-collusion identity-based encryption from semantically-secure public-key encryption: generic constructions with short ciphertexts. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_15

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the ECSEL Joint Undertaking (JU) under grant agreement No 826610 (Comp4Drones) and by the Austrian Science Fund (FWF) and netidee SCIENCE under grant agreement P31621-N38 (Profet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Rösler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rösler, P., Slamanig, D., Striecks, C. (2023). Unique-Path Identity Based Encryption with Applications to Strongly Secure Messaging. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14008. Springer, Cham. https://doi.org/10.1007/978-3-031-30589-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30589-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30588-7

  • Online ISBN: 978-3-031-30589-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics