Skip to main content

New Time-Memory Trade-Offs for Subset Sum – Improving ISD in Theory and Practice

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2023 (EUROCRYPT 2023)

Abstract

We propose new time-memory trade-offs for the random subset sum problem defined on \((a_1,\ldots ,a_n,t)\) over \(\mathbb {Z}_{2^n}\). Our trade-offs yield significant running time improvements for every fixed memory limit \(M\ge 2^{0.091n}\). Furthermore, we interpolate to the running times of the fastest known algorithms when memory is not limited. Technically, our design introduces a pruning strategy to the construction by Becker-Coron-Joux (BCJ) that allows for an exponentially small success probability. We compensate for this reduced probability by multiple randomized executions. Our main improvement stems from the clever reuse of parts of the computation in subsequent executions to reduce the time complexity per iteration.

As an application of our construction, we derive the first non-trivial time-memory trade-offs for Information Set Decoding (ISD) algorithms. Our new algorithms improve on previous (implicit) trade-offs asymptotically as well as practically. Moreover, our optimized implementation also improves on running time, due to reduced memory access costs. We demonstrate this by obtaining a new record computation in decoding quasi-cyclic codes (QC-3138). Using our newly obtained data points we then extrapolate the hardness of suggested parameter sets for the NIST PQC fourth round candidates McEliece, BIKE and HQC, lowering previous estimates by up to 6 bits and further increasing their reliability.

Funded by BMBF under Industrial Blockchain-iBlockchain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our numerical optimization scripts are based on a code by Bonnetain et al. [12] accessible at https://github.com/xbonnetain/optimization-subset-sum.

References

  1. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.: The general sieve kernel and new records in lattice reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_25

    Chapter  MATH  Google Scholar 

  2. Aragon, N., et al.: BIKE: bit flipping key encapsulation (2020)

    Google Scholar 

  3. Aragon, N., Lavauzelle, J., Lequesne, M.: decodingchallenge.org (2019). https://decodingchallenge.org

  4. Austrin, P., Kaski, P., Koivisto, M., Määttä, J.: Space–time tradeoffs for subset sum: an improved worst case algorithm. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 45–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_5

    Chapter  Google Scholar 

  5. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: A finite regime analysis of information set decoding algorithms. Algorithms 12(10), 209 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_17

    Chapter  Google Scholar 

  7. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knapsacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_21

    Chapter  Google Scholar 

  8. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th SODA, pp. 10–24. ACM-SIAM (Jan 2016). https://doi.org/10.1137/1.9781611974331.ch2

  9. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2n/20: How 1+1= 0 improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31

    Chapter  MATH  Google Scholar 

  10. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_3

    Chapter  Google Scholar 

  11. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press (May 2000). https://doi.org/10.1145/335305.335355

  12. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_22

    Chapter  Google Scholar 

  13. Both, L., May, A.: Optimizing bjmm with nearest neighbors: full decoding in 22/21n and mceliece security. In: WCC Workshop on Coding and Cryptography, vol. 214 (2017)

    Google Scholar 

  14. Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_2

    Chapter  Google Scholar 

  15. Bricout, R., Chailloux, A., Debris-Alazard, T., Lequesne, M.: Ternary syndrome decoding with large weight. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_18

    Chapter  Google Scholar 

  16. Delaplace, C., Esser, A., May, A.: Improved low-memory subset sum and LPN algorithms via multiple collisions. In: Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 178–199. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35199-1_9

    Chapter  MATH  Google Scholar 

  17. Dinur, I.: An algorithmic framework for the generalized birthday problem. Designs, Codes Cryptogr. 1–30 (2018)

    Google Scholar 

  18. Dinur, I.: Cryptanalytic applications of the polynomial method for solving multivariate equation systems over GF(2). In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 374–403. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_14

    Chapter  Google Scholar 

  19. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite problems, with applications to cryptanalysis, knapsacks, and combinatorial search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_42

    Chapter  Google Scholar 

  20. Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on gpus, with tensor cores. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 249–279. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_9

    Chapter  Google Scholar 

  21. Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings 5th Joint Soviet-Swedish International Workshop on Information Theory, pp. 50–52 (1991)

    Google Scholar 

  22. Esser, A.: Memory-efficient algorithms for solving subset sum and related problems with cryptanalytic applications. Ph.D. thesis, Ruhr University Bochum, Germany (2020)

    Google Scholar 

  23. Esser, A.: Revisiting nearest-neighbor-based information set decoding. Cryptology ePrint Archive (2022)

    Google Scholar 

  24. Esser, A., Bellini, E.: Syndrome decoding estimator. In: PKC 2022. LNCS, vol. 13177, pp. 112–141. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2_5

  25. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_17

    Chapter  Google Scholar 

  26. Esser, A., May, A.: Better sample-random subset sum in \(2^{0.255 n}\) and its impact on decoding random linear codes. arXiv preprint arXiv:1907.04295, withdrawn (2019)

  27. Esser, A., May, A.: Low weight discrete logarithm and subset Sum in \(2^{0.65n}\) with polynomial memory. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 94–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_4

    Chapter  MATH  Google Scholar 

  28. Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 433–457. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07082-2_16

  29. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM (JACM) 21(2), 277–292 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_12

    Chapter  Google Scholar 

  31. Karpman, P., Lefevre, C.: Time-memory tradeoffs for large-weight syndrome decoding in ternary codes. In: Public-Key Cryptography - PKC 2022–25th IACR International Conference on Practice and Theory of Public-Key Cryptography. LNCS, vol. 13177, pp. 82–111. Springer (2022). https://doi.org/10.1007/978-3-030-97121-2_4

  32. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 701–731. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_24

    Chapter  Google Scholar 

  33. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6

    Chapter  MATH  Google Scholar 

  34. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_9

    Chapter  Google Scholar 

  35. Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and the security of the server aided exponentiation. In: Cryptography and Computational Number Theory, pp. 331–342. Springer (2001). https://doi.org/10.1007/978-3-0348-8295-8_24

  36. Nikolić, I., Sasaki, Yu.: Refinements of the k-tree algorithm for the generalized birthday problem. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 683–703. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_28

    Chapter  Google Scholar 

  37. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  38. Schroeppel, R., Shamir, A.: A \({T}={O}(2^{n/2})\), \({S}={O}(2^{n/4})\) algorithm for certain NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850

    Chapter  Google Scholar 

  40. Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_10

    Chapter  Google Scholar 

  41. Udovenko, A., Vitto, G.: Breaking the \$ikep182 challenge. Cryptology ePrint Archive, Report 2021/1421 (2021). https://eprint.iacr.org/2021/1421

  42. Various: Round 3 official comment: Classic McEliece (2021). https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/ldAzu9PeaIM/m/VhLBcydEAAAJ

  43. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_19

    Chapter  Google Scholar 

  44. Wang, M., Liu, M.: Improved information set decoding for code-based cryptosystems with constrained memory. In: Wang, J., Yap, C. (eds.) FAW 2015. LNCS, vol. 9130, pp. 241–258. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19647-3_23

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID MA 2536/12 and by BMBF under Industrial Blockchain – iBlockchain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Esser .

Editor information

Editors and Affiliations

A Generalization to Arbitrary Depth d

A Generalization to Arbitrary Depth d

Note that in general we have

$$ \mathcal {L}_{i+1}=\frac{(q_i\cdot \mathcal {L}_i)^2}{2^{\ell _i}}, $$

where \(\ell _i\) is the additional bitwise constraint introduced on level i. The time and memory complexity are then given as before. The saturation constraints extend to

$$ q_i\cdot \mathcal {L}_i \le \frac{|D_i|}{2^{\ell _1+\ldots +\ell _i}}\text { for }i=2,\ldots , d-1, $$

where d is the depth of the tree. Together with the definition of the filtering probability given in Eq. (4), we can rewrite the saturation constraints for each level i as

$$ \sum _{j=1}^i (2^{i-j}-1)\ell _j \ge \sum _{j=1}^i 2^{i-j}\cdot r_j \text { for } i=1,\ldots d-2, $$

where there exist \(2^{r_j}\) different representations of any element from \(D_{j+1}\) as a sum of two elements from \(D_j\). Finally, the requirement of finding one representation of the solution in the final list is expressed via the condition

$$ q_d \cdot \mathcal {L}_d = 1, $$

which similar to the saturation constraints rewrites to

$$\begin{aligned} \sum _{j=1}^{d-1} (2^{d-j}-1)\ell _j = \sum _{j=1}^{d-1} 2^{d-j-1}\cdot r_j. \end{aligned}$$
(8)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esser, A., Zweydinger, F. (2023). New Time-Memory Trade-Offs for Subset Sum – Improving ISD in Theory and Practice. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14008. Springer, Cham. https://doi.org/10.1007/978-3-031-30589-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30589-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30588-7

  • Online ISBN: 978-3-031-30589-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics