Abstract
Multi-signatures have been drawing lots of attention in recent years, due to their applications in cryptocurrencies. Most early constructions require three-round signing, and recent constructions have managed to reduce the round complexity to two. However, their security proofs are mostly based on non-standard, interactive assumptions (e.g. one-more assumptions) and come with a huge security loss, due to multiple uses of rewinding (aka the Forking Lemma). This renders the quantitative guarantees given by the security proof useless.
In this work, we improve the state of the art by proposing two efficient two-round multi-signature schemes from the (standard, non-interactive) Decisional Diffie-Hellman (DDH) assumption. Both schemes are proven secure in the random oracle model without rewinding. We do not require any pairing either. Our first scheme supports key aggregation but has a security loss linear in the number of signing queries, and our second scheme is the first tightly secure construction.
A key ingredient in our constructions is a new homomorphic dual-mode commitment scheme for group elements, that allows to equivocate for messages of a certain structure. The definition and efficient construction of this commitment scheme is of independent interest.
J. Pan—Supported by the Research Council of Norway under Project No. 324235.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We do not consider proofs in the (idealized) algebraic group model and do not list schemes that are not in the plain public key model.
- 2.
- 3.
In the actual construction, we need to commit to pairs of group elements, but we consider the simpler setting of one group element in this overview.
- 4.
Note that at this point, it was important that we introduced the oracle \(\bar{\textsf{H}}_b\). This is because otherwise, if we queried \(\textsf{H}_b(\textsf{seed} _1,\cdot )\) in oracle \(\textsf{H}\), game \({\textbf {G}} _3\) would always output 0 and the games would not be indistinguishable.
- 5.
We omit the description of \({\mathbb {G}} \) from \({\textsf{par}} \) to make the presentation concise.
- 6.
This corresponds to the HVZK property of linear identification protocols.
References
Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signatures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_34
Kılınç Alper, H., Burdges, J.: Two-round trip schnorr multi-signatures via delinearized witnesses. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 157–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_7
Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 449–458. ACM Press (2008). https://doi.org/10.1145/1455770.1455827
Bellare, M., Dai, W.: Chain reductions for multi-signatures and the HBMS scheme. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 650–678. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_22
Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 390–399. ACM Press (2006). https://doi.org/10.1145/1180405.1180453
Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_23
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3
Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_15
Boschini, C., Takahashi, A., Tibouchi, M.: MuSig-L: lattice-based multi-signature with single-round online phase. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 276–305. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_10
Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: PI-cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol. 13509, pp. 3–31. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15982-4_1
Crites, E., Komlo, C., Maller, M.: How to prove schnorr assuming schnorr: security of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375 (2021). https://eprint.iacr.org/2021/1375
Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_30
Damgård, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 99–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_5
Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer Society Press (2019). https://doi.org/10.1109/SP.2019.00050
Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8
Fukumitsu, M., Hasegawa, S.: A tightly secure ddh-based multisignature with public-key aggregation. Int. J. Netw. Comput. 11(2), 319–337 (2021). http://www.ijnc.org/index.php/ijnc/article/view/257
Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight reductions to the diffie-hellman problems. J. Cryptol. 20(4), 493–514 (2007). https://doi.org/10.1007/s00145-007-0549-3
Groth, J.: Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive, Report 2009/007 (2009). https://eprint.iacr.org/2009/007
Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24
Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_11
Han, S., et al.: Authenticated key exchange and signatures with tight security in the standard model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 670–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_23
Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from identification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_12
Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisignatures. NEC Res. Dev. 71, 1–8 (1983)
Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 468–492. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_16
Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight security reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp. 155–164. ACM Press (2003). https://doi.org/10.1145/948109.948132
Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_2
Langrehr, R., Pan, J.: Unbounded HIBE with tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 129–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_5
Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_28
Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures with applications to Bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019). https://doi.org/10.1007/s10623-019-00608-x
Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001, pp. 245–254. ACM Press (2001). https://doi.org/10.1145/501983.502017
Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round schnorr multi-signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_8
Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: schnorr multi-signatures with verifiably deterministic nonces. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1717–1731. ACM Press (2020). https://doi.org/10.1145/3372297.3417236
Pan, J., Wagner, B.: Chopsticks: fork-free two-round multi-signatures from non-interactive assumptions. Cryptology ePrint Archive, Paper 2023/198 (2023). https://eprint.iacr.org/2023/198, https://eprint.iacr.org/2023/198
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725
Tessaro, S., Zhu, C.: Threshold and multi-signature schemes from linear hash functions. In: Eurocrypt 2023, LNCS (to appear). Springer, Heidelberg (2023)
Acknowledgments
We thank the anonymous reviewers from Eurocrypt 2023 for their useful feedback and suggestions. In particular, it was pointed out the similarity between the commitment scheme of Bagherzandi, Cheon, and Jarecki in [3] and ours.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Pan, J., Wagner, B. (2023). Chopsticks: Fork-Free Two-Round Multi-signatures from Non-interactive Assumptions. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14008. Springer, Cham. https://doi.org/10.1007/978-3-031-30589-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-30589-4_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30588-7
Online ISBN: 978-3-031-30589-4
eBook Packages: Computer ScienceComputer Science (R0)