Skip to main content

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2023 (EUROCRYPT 2023)

Abstract

An Ideal Cipher (IC) is a cipher where each key defines a random permutation on the domain. Ideal Cipher on a group has many attractive applications, e.g., the Encrypted Key Exchange (EKE) protocol for Password Authenticated Key Exchange (PAKE) [8], or asymmetric PAKE (aPAKE) [31, 33]. However, known constructions for IC on a group domain all have drawbacks, including key leakage from timing information [12], requiring 4 hash-onto-group operations if IC is an 8-round Feistel [22], and limiting the domain to half the group [9] or using variable-time encoding [39, 47] if IC is implemented via (quasi-) bijections from groups to bitstrings [33].

We propose an IC relaxation called a (Randomized) Half-Ideal Cipher (HIC), and we show that HIC on a group can be realized by a modified 2-round Feistel (m2F), at a cost of 1 hash-onto-group operation, which beats existing IC constructions in versatility and computational cost. HIC weakens IC properties by letting part of the ciphertext be non-random, but we exemplify that it can be used as a drop-in replacement for IC by showing that EKE [8] and aPAKE of [33] realize respectively UC PAKE and UC aPAKE even if they use HIC instead of IC. The m2F construction can also serve as IC domain extension, because m2F constructs HIC on domain D from an RO-indifferentiable hash onto D and an IC on \(2{\kappa }\)-bit strings, for \({\kappa }\) a security parameter. One application of such extender is a modular lattice-based UC PAKE using EKE instantiated with HIC and anonymous lattice-based KEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Bellare et al. [6] showed that EKE+IC is a game-based secure PAKE, then Abdalla et al. [1] showed that EKE variant with explicit key confirmation realizes UC PAKE, and recently McQuoid et al. [43] showed that a round-minimal EKE variant realizes UC PAKE as well (however, see more on their analysis below).

  2. 2.

    This describes only the adversarial interface to the HIC functionality. Honest parties’ interface is as in IC in both directions, except that it hides encryption randomness, i.e. encryption takes only input \(M\in \mathbb {G}\) and decryption outputs only the \(M\in \mathbb {G}\) part of the “extended” HIC plaintext \(m\in \mathcal {D}\).

  3. 3.

    Two recent papers [41, 49] investigate anonymity of several CCA-secure LWE-based KEMs achieved via variants of the Fujisaki-Okamoto transform [32] applied to the IND-secure versions of these KEM’s. However, the underlying IND-secure KEM’s are all anonymous, see e.g. [41, 49] and the references therein.

  4. 4.

    A potential benefit of a game-based notion over a UC notion is that the former could be easier to state and use, but this does not seem to be the case for the POPF properties of [43], because they are quite involved and subtle.

  5. 5.

    Technically [43] state this property as pseudorandomness of outputs of any weak-PRF on the decryptions of \(c^*\) for any \(k\ne k^*\), and not the pseudorandomness of the decrypted plaintexts themselves.

  6. 6.

    In Fig. 2 we use \( pw \) to denote keys used in the HIC cipher because we use variables k and \( K \) for other keys in the later sections. Moreover, in PAKE and aPAKE applications the role of a HIC key is played by a password.

  7. 7.

    We assume that no honest \(\textsf{P}\) ever executes \((\textsf{NewSession},\textsf{sid},\textsf{P},\textsf{CP},\cdot )\) for \(\textsf{CP}=\textsf{P}\).

  8. 8.

    We assume that \(\mathcal {Z}\) invokes at most two sessions for any fixed identifier \(\textsf{sid}\).

  9. 9.

    This bound involves \(q_{IC}+q_P\) instead of \(q_P\) key exchange instances because our reductions to \(\textsf{KA}\) security run \(\textsf{KA}.\textsf{msg}\) for each adversarial \(\textsf{AdvDec}\) query to \(\mathcal {F}_{\textsf{HIC}}\).

References

  1. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party password-based key exchange protocols in the UC framework. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 335–351. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79263-5_22

    Chapter  MATH  Google Scholar 

  2. Albrecht, M.R., et al.: Classic McEliece: NIST round 3 submission (2021). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

  3. Alkim,E., et al.: FrodoKEM: NIST round 3 submission (2021). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

  4. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_29

    Chapter  Google Scholar 

  5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_33

    Chapter  MATH  Google Scholar 

  6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_11

    Chapter  Google Scholar 

  7. Bellare, M., Rogaway, P.: Random Oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993. https://doi.org/10.1145/168588.168596

  8. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols secure against dictionary attacks. In: IEEE Computer Society Symposium on Research in Security and Privacy - S &P 1992, pp. 72–84. IEEE (1992)

    Google Scholar 

  9. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve points indistinguishable from uniform random strings. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 967–980. ACM Press, November 2013. https://doi.org/10.1145/2508859.2516734

  10. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_15

    Chapter  Google Scholar 

  11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_19

    Chapter  Google Scholar 

  12. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_9

    Chapter  Google Scholar 

  13. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_21

    Chapter  Google Scholar 

  14. Bos, J., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS P), pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

  15. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: IEEE Symposium on Foundations of Computer Science - FOCS 2001, pp. 136–145. IEEE (2001)

    Google Scholar 

  16. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_24

    Chapter  Google Scholar 

  17. Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_17

    Chapter  Google Scholar 

  18. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 1–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_1

    Chapter  Google Scholar 

  19. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round feistel is indifferentiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_23

    Chapter  Google Scholar 

  20. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and Xoofff. IACR Trans. Symm. Cryptol. 2018(4), 1–38 (2018). https://doi.org/10.13154/tosc.v2018.i4.1-38

  21. Dai, Y., Seurin, Y., Steinberger, J., Thiruvengadam, A.: Indifferentiability of iterated even-mansour ciphers with non-idealized key-schedules: five rounds are necessary and sufficient. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 524–555. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_18

    Chapter  Google Scholar 

  22. Dai, Y., Steinberger, J.: Indifferentiability of 8-round feistel networks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_4

    Chapter  Google Scholar 

  23. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_16

    Chapter  Google Scholar 

  24. Desai, A.: The security of all-or-nothing encryption: protecting against exhaustive key search. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 359–375. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_23

    Chapter  Google Scholar 

  25. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_31

    Chapter  Google Scholar 

  27. Dodis, Y., Stam, M., Steinberger, J., Liu, T.: Indifferentiability of confusion-diffusion networks. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 679–704. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_24

    Chapter  Google Scholar 

  28. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_17

    Chapter  Google Scholar 

  29. Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., Wood, C.: Hashing to elliptic curves, irft-cfrg active draft (2022). https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/

  30. Freitas Dos Santos, B., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on groups with applications to UC (a)PAKE. Cryptology ePrint Archive, Report 2023/295 (2023). http://eprint.iacr.org/2023/295

  31. Dos Santos, B.F., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE with low computation and communication. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13276. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_5

  32. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

    Chapter  Google Scholar 

  33. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding key exchange. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 701–730. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_24

    Chapter  Google Scholar 

  34. Guo, C., Lin, D.: Improved domain extender for the ideal cipher. Cryptogr. Commun. 7(4), 509–533 (2015). https://doi.org/10.1007/s12095-015-0128-7

    Article  MathSciNet  MATH  Google Scholar 

  35. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  36. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 89–98. ACM Press, June 2011. https://doi.org/10.1145/1993636.1993650

  37. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC beyond the birthday paradox limit a new construction. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_19

    Chapter  Google Scholar 

  38. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_20

    Chapter  Google Scholar 

  39. Kim, T., Tibouchi, M.: Invalid curve attacks in a GLS setting. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp. 41–55. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22425-1_3

    Chapter  MATH  Google Scholar 

  40. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33

    Chapter  Google Scholar 

  41. Grubbs, P., Maram, V., Paterson, K.G.: Anonymous, robust post-quantum public key encryption. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13277. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_15

  42. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol (2016). https://signal.org/docs/specifications/x3dh/

  43. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-n OT from programmable-once public functions. In: 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS 2020, Virtual Event, USA, 9–13 November 2020 (2020). https://doi.org/10.1145/3372297.3417870, https://eprint.iacr.org/2020/1043

  44. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_40

    Chapter  Google Scholar 

  45. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_31

    Chapter  Google Scholar 

  46. Shannon, C.E.: Communication theory of secrecy systems. The Bell Syst. Tech. J. 28(4), 656–715 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

    Article  MathSciNet  MATH  Google Scholar 

  47. Tibouchi, M.: Elligator squared: uniform points on elliptic curves of prime order as uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 139–156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_10

    Chapter  Google Scholar 

  48. Winternitz, R.S.: Producing a one-way hash function from DES. In: Chaum, D. (eds.) Advances in Cryptology. Springer, Boston (1984). https://doi.org/10.1007/978-1-4684-4730-9_17

  49. Xagawa, K.: Anonymity of NIST PQC Round 3 KEMs. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13277. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaw Jarecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, B.F.D., Gu, Y., Jarecki, S. (2023). Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14008. Springer, Cham. https://doi.org/10.1007/978-3-031-30589-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30589-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30588-7

  • Online ISBN: 978-3-031-30589-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics