Skip to main content

Registered Attribute-Based Encryption

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2023 (EUROCRYPT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14006))

Abstract

Attribute-based encryption (ABE) generalizes public-key encryption and enables fine-grained control to encrypted data. However, ABE upends the traditional trust model of public-key encryption by requiring a single trusted authority to issue decryption keys. If an adversary compromises the central authority and exfiltrates its secret key, then the adversary can decrypt every ciphertext in the system.

This work introduces registered ABE, a primitive that allows users to generate secret keys on their own and then register the associated public key with a “key curator” along with their attributes. The key curator aggregates the public keys from the different users into a single compact master public key. To decrypt, users occasionally need to obtain helper decryption keys from the key curator which they combine with their own secret keys. We require that the size of the aggregated public key, the helper decryption keys, the ciphertexts, as well as the encryption/decryption times to be polylogarithmic in the number of registered users. Moreover, the key curator is entirely transparent and maintains no secrets. Registered ABE generalizes the notion of registration-based encryption (RBE) introduced by Garg et al. (TCC 2018), who focused on the simpler setting of identity-based encryption.

We construct a registered ABE scheme that supports an a priori bounded number of users and policies that can be described by a linear secret sharing scheme (e.g., monotone Boolean formulas) from assumptions on composite-order pairing groups. Our approach deviates sharply from previous techniques for constructing RBE and only makes black-box use of cryptography. All existing RBE constructions (a weaker notion than registered ABE) rely on heavy non-black-box techniques. The encryption and decryption costs of our construction are comparable to those of vanilla pairing-based ABE. Two limitations of our scheme are that it requires a structured reference string whose size scales quadratically with the number of users (and linearly with the size of the attribute universe) and the running time of registration scales linearly with the number of users.

Finally, as a feasibility result, we construct a registered ABE scheme that supports general policies and an arbitrary number of users from indistinguishability obfuscation and somewhere statistically binding hash functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Previous constructions of registration-based encryption [13, 18,19,20] only assumed a uniform random string rather than a structured reference string.

  2. 2.

    Just like in RBE, the key curator first verifies the attributes claimed by the user before proceeding. This step is analogous to the checks certificate authorities perform in the public-key infrastructure before issuing a certificate or what the central authority would do in a standard ABE setting before issuing a decryption key. A difference is that the key curator possesses no secret information.

  3. 3.

    This roughly coincides with the notion of weak efficiency in the work of Garg et al.  [18].

  4. 4.

    For ease of notation in the formal description (Sect. 6 Construction 6.1), we do not implement this “clearing out” step explicitly. However, the construction is functionally behaving in this manner.

  5. 5.

    Note that a single-slot scheme by itself is trivial to construct. We can simply define the master public key to be the public key and set of attributes associated with the slot. However, for describing our construction, it is simpler to first illustrate the mechanics in the single-slot setting and then build up to the full multi-slot construction.

  6. 6.

    The scheme of Lewko et al.  [30] also includes a row-specific blinding factor associated with each row of \(\textbf{M}\). We do not need this additional randomization in our security analysis.

References

  1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_29

    Chapter  Google Scholar 

  2. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  3. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 1–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis, Technion (1996)

    Google Scholar 

  5. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selective opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_15

    Chapter  Google Scholar 

  6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_18

    Chapter  Google Scholar 

  8. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  9. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_28

    Chapter  Google Scholar 

  10. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In: ACM CCS (2009)

    Google Scholar 

  11. Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of multiple trust authorities in pairing based cryptosystems. In: Davida, G., Frankel, Y., Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45831-X_18

    Chapter  Google Scholar 

  12. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_32

    Chapter  Google Scholar 

  13. Cong, K., Eldefrawy, K., Smart, N.P.: Optimizing registration based encryption. In: Paterson, M.B. (ed.) IMACC 2021. LNCS, vol. 13129, pp. 129–157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92641-0_7

  14. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for DNFs from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 177–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_7

    Chapter  Google Scholar 

  15. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for nc\(\hat{\,}\)1 from computational-bdh. IACR Cryptol. ePrint Arch. (2021)

    Google Scholar 

  16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013)

    Google Scholar 

  18. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryption: removing private-key generator from IBE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_25

    Chapter  Google Scholar 

  19. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 63–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_3

    Chapter  Google Scholar 

  20. Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 621–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_21

    Chapter  Google Scholar 

  21. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_24

    Chapter  Google Scholar 

  22. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-based encryption. In: ACM CCS (2008)

    Google Scholar 

  23. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS (2006)

    Google Scholar 

  24. Hohenberger, S., Lu, G., Waters, B., Wu, D.J.: Registered attribute-based encryption. IACR Cryptol. ePrint Arch. (2022)

    Google Scholar 

  25. Hubácek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: ITCS (2015)

    Google Scholar 

  26. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: STOC (2021)

    Google Scholar 

  27. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over \(\mathbb{F} _p\), dlin, and prgs in nc\({}^{\text{0 }}\). In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13275, pp. 670–699. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06944-4_23

    Chapter  Google Scholar 

  28. Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryptography. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 436–453. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_27

    Chapter  MATH  Google Scholar 

  29. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_19

  30. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

    Chapter  Google Scholar 

  31. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27

    Chapter  Google Scholar 

  32. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_31

    Chapter  Google Scholar 

  33. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute based encryption without a central authority. In: INDOCRYPT (2008)

    Google Scholar 

  34. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00730-9_2

    Chapter  Google Scholar 

  35. Paterson, K.G., Srinivasan, S.: Security and anonymity of identity-based encryption with multiple trusted authorities. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 354–375. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5_23

    Chapter  Google Scholar 

  36. Rouselakis, Y., Waters, B.: Efficient statically-secure large-universe multi-authority attribute-based encryption. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 315–332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_19

    Chapter  Google Scholar 

  37. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  38. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  39. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  40. Waters, B., Wee, H., Wu, D.J.: Multi-authority ABE from lattices without random oracles. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022. Lecture Notes in Computer Science, vol. 13747, pp. 651–679. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22318-1_23

    Chapter  Google Scholar 

  41. Waters, B., Wu, D.J.: Batch arguments for NP and more from standard bilinear group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO 2022, CRYPTO 2022. Lecture Notes in Computer Science, vol. 13508, pp. 433–463. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_15

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the Eurocrypt reviewers for helpful feedback on the presentation. Susan Hohenberger is supported by NSF CNS-1908181, the Office of Naval Research N00014-19-1-2294, and a Packard Foundation Subaward via UT Austin. Brent Waters is supported by NSF CNS-1908611, a Simons Investigator award, and the Packard Foundation Fellowship. David J. Wu is supported by NSF CNS-2151131, NSF CNS-2140975, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Hohenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hohenberger, S., Lu, G., Waters, B., Wu, D.J. (2023). Registered Attribute-Based Encryption. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14006. Springer, Cham. https://doi.org/10.1007/978-3-031-30620-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30620-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30619-8

  • Online ISBN: 978-3-031-30620-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics