Skip to main content

A Predictive Coding Approach to Multivariate Time Series Anomaly Detection

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Included in the following conference series:

  • 1984 Accesses

Abstract

This paper proposes LPC-AD, a fast and accurate multivariate time series (MTS) anomaly detection method. LPC-AD is motivated by the ever-increasing needs for fast and accurate MTS anomaly detection methods to support fast troubleshooting in cloud computing, micro-service systems, etc. LPC-AD is fast in the sense that it reduces the training time by as high as 38.2% compared to the state-of-the-art (SOTA) deep learning methods that focus on training speed. LPC-AD is accurate in the sense that it improves the detection accuracy by as high as 18.9% compared to SOTA sophisticated deep learning methods that focus on enhancing detection accuracy. Methodologically, LPC-AD contributes a generic architecture LPC-Reconstruct for one to attain different trade-offs between training speed and detection accuracy. More specifically, LPC-Reconstruct is built on ideas from autoencoder for reducing redundancy in time series, latent predictive coding for capturing temporal dependence in MTS, and randomized perturbation for avoiding overfitting of anomalous dependence in the training data. We present simple instantiations of LPC-Reconstruct to attain fast training speed, where we propose a simple randomized perturbation method. The superior performance of LPC-AD over SOTA methods is validated by extensive experiments on four large real-world datasets. Experiment results also show the necessity and benefit of each component of the LPC-Reconstruct architecture and that LPC-AD is robust to hyper parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abernethy, J., Lee, C., Tewari, A.: Perturbation techniques in online learning and optimization. Perturbat. Optim. Stat. 223 (2016)

    Google Scholar 

  2. Atal, B.S., Schroeder, M.R.: Adaptive predictive coding of speech signals. Bell Syst. Tech. J. 49(8), 1973–1986 (1970)

    Article  Google Scholar 

  3. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsupervised anomaly detection on multivariate time series. In: ACM KDD (2020)

    Google Scholar 

  4. Carmona, C.U., Aubet, F.X., Flunkert, V., Gasthaus, J.: Neural contextual anomaly detection for time series. In: IJCAI (2022)

    Google Scholar 

  5. Dai, L., Lin, T., Liu, C., Jiang, B., Liu, Y., Xu, Z., Zhang, Z.L.: SDFVAE: static and dynamic factorized VAE for anomaly detection of multivariate CDN KPIs. In: WWW (2021)

    Google Scholar 

  6. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: AAAI (2021)

    Google Scholar 

  7. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: IEEE ICCV (2015)

    Google Scholar 

  8. Full Paper. https://1drv.ms/b/s!AkqQNKuLPUbEi1enh5C0RrTsDVL2?e=tvPAnY

  9. Kim, S., Choi, K., Choi, H.S., Lee, B., Yoon, S.: Towards a rigorous evaluation of time-series anomaly detection. In: AAAI (2022)

    Google Scholar 

  10. Kitagawa, G., Gersch, W.: Linear gaussian state space modeling. In: Kitagawa, G., Gersch, W. (eds.) Smoothness Priors Analysis of Time Series, vol. 116, pp. 55–65. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0761-0_5

    Chapter  MATH  Google Scholar 

  11. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56

    Chapter  Google Scholar 

  12. Li, G., et al.: openGauss: an autonomous database system. VLDB 14, 3028–3042 (2021)

    Google Scholar 

  13. Li, Z., et al.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: ACM KDD (2021)

    Google Scholar 

  14. Liu, D., et al.: MicroHECL: high-efficient root cause localization in large-scale microservice systems. In: IEEE ICSE-SEIP (2021)

    Google Scholar 

  15. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: IEEE ICDM (2008)

    Google Scholar 

  16. Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9(1), 1–10 (2018)

    Article  Google Scholar 

  17. Ma, M., et al.: Diagnosing root causes of intermittent slow queries in cloud databases. VLDB 13, 1176–1189 (2020)

    Google Scholar 

  18. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148 (2016)

  19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  20. Nguyen, N., Quanz, B.: Temporal latent auto-encoder: a method for probabilistic multivariate time series forecasting. In: AAAI (2021)

    Google Scholar 

  21. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018)

    Article  Google Scholar 

  22. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.: A dual-stage attention-based recurrent neural network for time series prediction. arXiv preprint arXiv:1704.02971 (2017)

  23. Reynolds, D.A.: Gaussian mixture models. Encycl. Biometr. 741(659–663) (2009)

    Google Scholar 

  24. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: ICML (2015)

    Google Scholar 

  25. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: ACM KDD (2019)

    Google Scholar 

  26. Tuli, S., Casale, G., Jennings, N.R.: TranAD: deep transformer networks for anomaly detection in multivariate time series data. arXiv preprint arXiv:2201.07284 (2022)

  27. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  28. Wang, Y., Masoud, N., Khojandi, A.: Real-time sensor anomaly detection and recovery in connected automated vehicle sensors. IEEE TITS 22(3), 1411–1421 (2020)

    Google Scholar 

  29. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In: WWW (2018)

    Google Scholar 

  30. Yaacob, A.H., Tan, I.K., Chien, S.F., Tan, H.K.: Arima based network anomaly detection. In: CCSN (2010)

    Google Scholar 

  31. Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: AAAI (2019)

    Google Scholar 

  32. Zhao, H., et al.: Multivariate time-series anomaly detection via graph attention network. In: IEEE ICDM (2020)

    Google Scholar 

  33. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: ICLR (2018)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Alibaba Innovative Research grant (ATA50DHZ4210003), National Natural Science Foundation of China (62072429), the Chinese Academy of Sciences “Light of West China” Program, the Key Cooperation Project of Chongqing Municipal Education Commission (HZ2021008, HZ2021017), and the “Fertilizer Robot” project of Chongqing Committee on Agriculture and Rural Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, Z., Xie, H., Shang, M. (2023). A Predictive Coding Approach to Multivariate Time Series Anomaly Detection. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics