Skip to main content

Towards Time-Series Key Points Detection Through Self-supervised Learning and Probability Compensation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Included in the following conference series:

  • 1972 Accesses

Abstract

Key points detection is crucial for signal analysis by marking the identification points of specific events. Deep learning methods have been introduced into key points detection tasks due to their significant representation learning ability. However, in contrast to common time series classification and prediction tasks, the target key points correspond to significantly different time-series patterns and account for an extremely small proportion in a whole sample. Consequently, existing end-to-end methods for key points detection encounter two major problems: specificity and sparsity. Thus, in this work, we address these issues by proposing a probability compensated self-supervised learning framework named ProCSS. Our ProCSS consists of two major components: 1) a pretext task module pretraining an encoder based on self-supervised learning to capture effective time-series representations with a higher generalization ability; 2) a joint loss function providing both dynamic focal adaptation and probability compensation by extreme value theory. Extensive experiments using both real-world and benchmark datasets are conducted. The results indicate that our method outperforms our rival methods for time-series key points detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aditi, B., Sanjay, K.: A robust approach to denoise ECG signals based on fractional Stockwell transform. Biomed. Signal Process. Control 62, 102090 (2020)

    Article  Google Scholar 

  2. Ahad, N., Davenport, M.A.: Semi-supervised sequence classification through change point detection. CoRR abs/2009.11829 arXiv:2009.11829 (2020)

  3. Allen, R.V.: Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am. 68(5), 1521–1532 (1978)

    Article  Google Scholar 

  4. Alom, Z., Hasan, M., Yakopcic, C.: Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. CoRR abs/1802.06955 (2018)

    Google Scholar 

  5. Baek, K., Lee, M., Shim, H.: PsyNet: self-supervised approach to object localization using point symmetric transformation. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, pp. 10451–10459 (2020)

    Google Scholar 

  6. Cauteruccio, F., et al.: A framework for anomaly detection and classification in multiple IoT scenarios. Futur. Gener. Comput. Syst. 114, 322–335 (2021)

    Article  Google Scholar 

  7. Chen, J., Liu, Y., Carey, S.J., Dudek, P.: Proximity estimation using vision features computed on sensor. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 2689–2695 (2020)

    Google Scholar 

  8. Chen, Y.: Automatic microseismic event picking via unsupervised machine learning. Geophys. J. Int. 222(3), 1750–1764 (2020)

    Google Scholar 

  9. Ding, D., Zhang, M., Pan, X., Yang, M., He, X.: Modeling extreme events in time series prediction. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1114–1122 (2019)

    Google Scholar 

  10. Dwass, M.: The asymptotic theory of extreme order statistics (janos galambos). SIAM Rev. 22(3), 379 (1980). https://doi.org/10.1137/1022076

  11. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Camb. Philos. Soc. 24(2), 180–190 (1928)

    Article  MATH  Google Scholar 

  12. Gong, Y., Lai, C.J., Chung, Y., Glass, J.R.: SSAST: self-supervised audio spectrogram transformer. CoRR abs/2110.09784 arXiv:2110.09784 (2021)

  13. Guizilini, V., Ramos, F.: Online self-supervised segmentation of dynamic objects. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4720–4727 (2013)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  15. He, Z., Peng, P., Wang, L., Jiang, Y.: Pickcapsnet: capsule network for automatic p-wave arrival picking. IEEE Geosci. Remote Sens. Lett. 18(4), 617–621 (2021)

    Article  Google Scholar 

  16. Huang, H., Lin, L., Tong, R., Hu, H.: UNet 3+: a full-scale connected UNet for medical image segmentation. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059 (2020)

    Google Scholar 

  17. Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M.: Real-time motor fault detection by 1-d convolutional neural networks. IEEE Trans. Ind. Electron. 63(11), 7067–7075 (2016)

    Article  Google Scholar 

  18. Jenni, S., Favaro, P.: Self-supervised feature learning by learning to spot artifacts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  19. Laitala, J., et al.: Robust ECG R-peak detection using LSTM. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 1104–1111 (2020)

    Google Scholar 

  20. Lee, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Unsupervised representation learning by sorting sequences. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 667–676 (2017)

    Google Scholar 

  21. Ma, H., Wang, T., Li, Y., Meng, Y.: A time picking method for microseismic data based on LLE and improved PSO clustering algorithm. IEEE Geosci. Remote Sens. Lett. 15(11), 1677–1681 (2018)

    Article  Google Scholar 

  22. Ma, K., Leung, H.: A novel lstm approach for asynchronous multivariate time series prediction. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2019)

    Google Scholar 

  23. Ma, Q., Zheng, Z., Zheng, J., Li, S., Zhuang, W., Cottrell, G.W.: Joint-label learning by dual augmentation for time series classification. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, pp. 8847–8855. AAAI Press (2021)

    Google Scholar 

  24. Meng, Y., Li, Y., Zhang, C., Zhao, H.: A time picking method based on spectral multimanifold clustering in microseismic data. IEEE Geosci. Remote Sens. Lett. 14(8), 1273–1277 (2017)

    Article  Google Scholar 

  25. Ozan, O., Jo, S., Loïc, L.: Attention u-net: learning where to look for the pancreas. CoRR abs/1804.03999 (2018)

    Google Scholar 

  26. Qin, X., et al.: Street-level air quality inference based on geographically context-aware random forest using opportunistic mobile sensor network. In: 2021 the 5th International Conference on Innovation in Artificial Intelligence, pp. 221–227 (2021)

    Google Scholar 

  27. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning, pp. 759–766 (2007)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Ross, Z.: Generalized seismic phase detection with deep learning. Bull. Seismol. Soc. Am. 108(5A), 2894–2901 (2018)

    Article  Google Scholar 

  30. Sterzentsenko, V., et al.: Self-supervised deep depth denoising. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1242–1251 (2019)

    Google Scholar 

  31. Wang, J., Teng, T.: Artificial neural network-based seismic detector. Bull. Seismol. Soc. Am. 85(1), 308–319 (1995)

    Article  Google Scholar 

  32. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2794–2802 (2015)

    Google Scholar 

  33. Xue, F., Yan, W.: Multivariate time series anomaly detection with few positive samples. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2022)

    Google Scholar 

  34. Zahid, M.U., et al.: Robust r-peak detection in low-quality Holter ECGs using 1D convolutional neural network. IEEE Trans. Biomed. Eng. 69(1), 119–128 (2022)

    Article  Google Scholar 

  35. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: Proceedings of the 38th International Conference on Machine Learning, pp. 12310–12320 (2021)

    Google Scholar 

  36. Zeng, J., Xie, P.: Contrastive self-supervised learning for graph classification. CoRR abs/2009.05923 arXiv:2009.05923 (2020)

  37. Zhang, C., Peng, Y.: Better and faster: knowledge transfer from multiple self-supervised learning tasks via graph distillation for video classification. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 1135–1141 (2018)

    Google Scholar 

  38. Zhao, Y., Shang, Z., Lian, Y.: A 13.34 \({\mu }\)w event-driven patient-specific ANN cardiac arrhythmia classifier for wearable ECG sensors. IEEE Trans. Biomed. Circuits Syst. 14(2), 186–197 (2020)

    Google Scholar 

  39. Zheng, J.: An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks. Geophys. J. Int. 212(2), 1389–1397 (2017)

    Article  MathSciNet  Google Scholar 

  40. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2020)

    Article  Google Scholar 

  41. Zhu, W., Beroza, G.: PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys. J. Int. 216(1), 261–273 (2018)

    Google Scholar 

  42. Zhu, X., Chen, B., Wang, X., Li, T.: Time series segmentation clustering: a new method for s-phase picking in microseismic data. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

Download references

Acknowledgments

The work is supported by National Key R &D Program of China (Grant No. 2022YFB3304302), the National Natural Science Foundation of China (Grant No. 62072087, 61972077, 52109116), LiaoNing Revitalization Talents Program (Grant No. XLYC2007079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, M. et al. (2023). Towards Time-Series Key Points Detection Through Self-supervised Learning and Probability Compensation. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics