Skip to main content

Towards Effective Trajectory Similarity Measure in Linear Time

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Included in the following conference series:

  • 2044 Accesses

Abstract

With the utilization of GPS devices and the development of location-based services, a massive amount of trajectory data has been collected and mined for many applications. Trajectory similarity computing, which identifies the similarity of given trajectories, is the fundamental functionality of trajectory data mining. The challenge in trajectory similarity computing comes from the noise in trajectories. Moreover, processing such a myriad of data also demands efficiency. However, existing trajectory similarity measures can hardly keep both accuracy and efficiency. In this paper, we propose a novel trajectory similarity measure termed ITS, which is robust to noise and can be evaluated in linear time. ITS converts trajectories into fixed-length vectors and compares them based on their respective vectors’ distance. Furthermore, ITS utilizes interpolation to get fixed-length vectors in linear time. The robustness of ITS owes to the interpolation, which makes trajectories aligned and points in trajectories evenly distributed. Experiments with 12 baselines on four real-world datasets show that ITS has the best overall performance on five representative downstream tasks in trajectory computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD, pp. 359–370 (1994)

    Google Scholar 

  2. Besse, P.C., Guillouet, B., Loubes, J., Royer, F.: Review and perspective for distance-based clustering of vehicle trajectories. IEEE Trans. Intell. Transp. Syst. 17(11), 3306–3317 (2016)

    Article  Google Scholar 

  3. Ceikute, V., Jensen, C.S.: Vehicle routing with user-generated trajectory data. In: MDM, pp. 14–23 (2015)

    Google Scholar 

  4. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: VLDB, pp. 792–803 (2004)

    Google Scholar 

  5. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491–502 (2005)

    Google Scholar 

  6. Hung, C., Peng, W., Lee, W.: Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. VLDB J. 24(2), 169–192 (2015)

    Article  Google Scholar 

  7. Ismail, A., Vigneron, A.: A new trajectory similarity measure for GPS data. In: IWGS 2015, pp. 19–22 (2015)

    Google Scholar 

  8. Kadous, M.W.: Temporal Classification: Extending the Classification Paradigm to Multivariate Time Series. Ph.D. thesis (2002)

    Google Scholar 

  9. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining applications. In: KDD, pp. 285–289 (2000)

    Google Scholar 

  10. Li, G., Hung, C., Liu, M., Pan, L., Peng, W., Chan, S.G.: Spatial-temporal similarity for trajectories with location noise and sporadic sampling. In: ICDE, pp. 1224–1235 (2021)

    Google Scholar 

  11. Li, R., et al.: JUST: JD urban spatio-temporal data engine. In: ICDE, pp. 1558–1569 (2020)

    Google Scholar 

  12. Li, X., Zhao, K., Cong, G., Jensen, C.S., Wei, W.: Deep representation learning for trajectory similarity computation. In: ICDE 2018, pp. 617–628 (2018)

    Google Scholar 

  13. Lin, B., Su, J.: Shapes based trajectory queries for moving objects. In: ACM-GIS, pp. 21–30 (2005)

    Google Scholar 

  14. Luo, Y., et al.: Deeptrack: monitoring and exploring spatio-temporal data: a case of tracking COVID-19. Proc. VLDB Endow. 13(12), 2841–2844 (2020)

    Article  Google Scholar 

  15. Magdy, N., Sakr, M.A., Mostafa, T., El-Bahnasy, K.: Review on trajectory similarity measures. In: ICICIS, pp. 613–619 (2015)

    Google Scholar 

  16. Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.: Predicting taxi-passenger demand using streaming data. IEEE Trans. Intell. Transp. Syst. 14(3), 1393–1402 (2013)

    Article  Google Scholar 

  17. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)

    Article  Google Scholar 

  18. Pelekis, N., Kopanakis, I., Marketos, G., Ntoutsi, I., Andrienko, G.L., Theodoridis, Y.: Similarity search in trajectory databases. In: TIME 2007, pp. 129–140 (2007)

    Google Scholar 

  19. Ranu, S., P, D., Telang, A.D., Deshpande, P., Raghavan, S.: Indexing and matching trajectories under inconsistent sampling rates. In: ICDE 2015, pp. 999–1010 (2015)

    Google Scholar 

  20. Rohani, M., Gingras, D., Gruyer, D.: A novel approach for improved vehicular positioning using cooperative map matching and dynamic base station DGPS concept. IEEE Trans. Intell. Transp. Syst. 17(1), 230–239 (2016)

    Article  Google Scholar 

  21. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    Article  Google Scholar 

  22. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. Proc. VLDB Endow. 10(11), 1178–1189 (2017)

    Article  Google Scholar 

  23. Su, H., Liu, S., Zheng, B., Zhou, X., Zheng, K.: A survey of trajectory distance measures and performance evaluation. VLDB J. 29(1), 3–32 (2020)

    Article  Google Scholar 

  24. Ta, N., Li, G., Xie, Y., Li, C., Hao, S., Feng, J.: Signature-based trajectory similarity join. IEEE Trans. Knowl. Data Eng. 29(4), 870–883 (2017)

    Article  Google Scholar 

  25. Vlachos, M., Gunopulos, D., Das, G.: Rotation invariant distance measures for trajectories. In: KDD, pp. 707–712 (2004)

    Google Scholar 

  26. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE 2002, pp. 673–684 (2002)

    Google Scholar 

  27. Yuan, J., et al.: T-drive: driving directions based on taxi trajectories. In: ACM-GIS 2010, pp. 99–108 (2010)

    Google Scholar 

  28. Zhang, H., et al.: Trajectory similarity learning with auxiliary supervision and optimal matching. In: IJCAI, pp. 3209–3215 (2020)

    Google Scholar 

  29. Zheng, Y., Xie, X., Ma, W.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Jiangsu Province (Grant Nos. BK20211307), and by project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Liu, A., Liu, G., Li, Z., Zhao, L. (2023). Towards Effective Trajectory Similarity Measure in Linear Time. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics