Skip to main content

Predicting Where You Visit in a Surrounding City: A Mobility Knowledge Transfer Framework Based on Cross-City Travelers

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Included in the following conference series:

  • 1982 Accesses

Abstract

The increasingly built intercity transportation enables people to visit surrounding cities conveniently. Hence it is becoming a hot research topic to predict where a traveler would visit in a surrounding city based on check-in data collected from location-based mobile Apps. However, as most users rarely travel out of hometown, there is a high skew of the quantity of check-in data between hometown and surrounding cities. Suffering from the severe sparsity of user mobility data in surrounding city, existing approaches do not perform well as they can hardly maintain travelers’ intrinsic preference and meanwhile adapt to travelers’ interest drift. To address these concerns, in this paper, taking cross-city travelers as the medium, we propose a novel framework called CityTrans to transfer traveler mobility knowledge from hometown city to surrounding city, which considers both the long-term preference in hometown city and short-term interest drift in surrounding city. Various attention mechanisms are leveraged to obtain traveler representation enriched by long-term and short-term preferences. Besides, we propose to portray POIs through GNN incorporating POI attributes and geographical information. Finally, the traveler and POI representations are combined for prediction. To train the framework, the transfer loss as well as the prediction loss are jointly optimized. Extensive experiments on real-world datasets validate the superiority of our framework over several state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For clarity, in this paper, we refer to people’s residential city or working city as the hometown city, and refer to others as the out-of-town city. Besides, if an out-of-town city is close to the hometown city, we refer to it as the surrounding city.

  2. 2.

    https://www.yelp.com/dataset/challenge.

  3. 3.

    Please note that we still regard those travelers with only one check-in record in the surrounding city as non-cross-city travelers, because their only check-in record in the surrounding city needs to be used for cold-start prediction.

References

  1. Chen, Y., Wang, X., Fan, M., Huang, J., Yang, S., Zhu, W.: Curriculum meta-learning for next poi recommendation. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2692–2702 (2021)

    Google Scholar 

  2. Dang, W., et al.: Predicting human mobility via graph convolutional dual-attentive networks. In: Proceedings of the 15th ACM International Conference on Web Search and Data Mining, pp. 192–200 (2022)

    Google Scholar 

  3. Ding, J., Yu, G., Li, Y., Jin, D., Gao, H.: Learning from hometown and current city: cross-city poi recommendation via interest drift and transfer learning. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 3, no. 4, pp. 1–28 (2019)

    Google Scholar 

  4. Fan, Z., Arai, A., Song, X., Witayangkurn, A., Kanasugi, H., Shibasaki, R.: A collaborative filtering approach to citywide human mobility completion from sparse call records. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, pp. 2500–2506 (2016)

    Google Scholar 

  5. Feng, J., et al.: Deepmove: predicting human mobility with attentional recurrent networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 1459–1468 (2018)

    Google Scholar 

  6. Gupta, V., Bedathur, S.: Doing more with less: overcoming data scarcity for poi recommendation via cross-region transfer. ACM Trans. Intell. Syst. Technol. 13(3), 1–24 (2022)

    Article  Google Scholar 

  7. Jiang, R., et al.: Transfer urban human mobility via poi embedding over multiple cities. ACM Trans. Data Sci. 2(1), 1–26 (2021)

    Article  MathSciNet  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representation, pp. 1–15 (2015)

    Google Scholar 

  9. Li, D., Gong, Z.: A deep neural network for crossing-city poi recommendations. IEEE Trans. Knowl. Data Eng. 34(8), 3536–3548 (2022)

    Article  Google Scholar 

  10. Luca, M., Barlacchi, G., Lepri, B., Pappalardo, L.: A survey on deep learning for human mobility. ACM Comput. Surv. (CSUR) 55(1), 1–44 (2021)

    Article  Google Scholar 

  11. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

  12. Wang, H., Fu, Y., Wang, Q., Yin, H., Du, C., Xiong, H.: A location-sentiment-aware recommender system for both home-town and out-of-town users. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1143 (2017)

    Google Scholar 

  13. Wang, H., Li, Y., Jin, D., Han, Z.: Attentional markov model for human mobility prediction. IEEE J. Sel. Areas Commun. 39(7), 2213–2225 (2021)

    Article  Google Scholar 

  14. Wang, L., Geng, X., Ma, X., Liu, F., Yang, Q.: Cross-city transfer learning for deep spatio-temporal prediction. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 1893–1899 (2019)

    Google Scholar 

  15. Wei, Y., Zheng, Y., Yang, Q.: Transfer knowledge between cities. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1905–1914 (2016)

    Google Scholar 

  16. Xie, M., Yin, H., Wang, H., Xu, F., Chen, W., Wang, S.: Learning graph-based poi embedding for location-based recommendation. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 15–24 (2016)

    Google Scholar 

  17. Xie, R., Chen, Y., Xie, Q., Xiao, Y., Wang, X.: We know your preferences in new cities: mining and modeling the behavior of travelers. IEEE Commun. Mag. 56(11), 28–35 (2018)

    Article  Google Scholar 

  18. Xin, H., et al.: Out-of-town recommendation with travel intention modeling. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4529–4536 (2021)

    Google Scholar 

  19. Xu, J., Zhao, J., Zhou, R., Liu, C., Zhao, P., Zhao, L.: Predicting destinations by a deep learning based approach. IEEE Trans. Knowl. Data Eng. 33(2), 651–666 (2021)

    Article  Google Scholar 

  20. Xu, S., Fu, X., Cao, J., Liu, B., Wang, Z.: Survey on user location prediction based on geo-social networking data. World Wide Web 23(3), 1621–1664 (2020). https://doi.org/10.1007/s11280-019-00777-8

    Article  Google Scholar 

  21. Xu, S., Fu, X., Pi, D., Ma, Z.: Inferring individual human mobility from sparse check-in data: a temporal-context-aware approach. IEEE Trans. Comput. Soc. Syst. (2022). https://doi.org/10.1109/TCSS.2022.3231601

    Article  Google Scholar 

  22. Yang, D., Fankhauser, B., Rosso, P., Cudre-Mauroux, P.: Location prediction over sparse user mobility traces using rnns: flashback in hidden states! In: Proceedings of the 29th International Joint Conference on Artificial Intelligence, pp. 2184–2190 (2020)

    Google Scholar 

  23. Yang, D., Qu, B., Yang, J., Cudré-Mauroux, P.: Lbsn2vec++: heterogeneous hypergraph embedding for location-based social networks. IEEE Trans. Knowl. Data Eng. 34(4), 1843–1855 (2022)

    Google Scholar 

  24. Yin, H., Zhou, X., Cui, B., Wang, H., Zheng, K., Nguyen, Q.V.H.: Adapting to user interest drift for poi recommendation. IEEE Trans. Knowl. Data Eng. 28(10), 2566–2581 (2016)

    Article  Google Scholar 

  25. Yu, F., Cui, L., Guo, W., Lu, X., Li, Q., Lu, H.: A category-aware deep model for successive poi recommendation on sparse check-in data. In: Proceedings of the 2020 World Wide Web Conference, pp. 1264–1274 (2020)

    Google Scholar 

  26. Zhang, C., Zhao, K., Chen, M.: Beyond the limits of predictability in human mobility prediction: context-transition predictability. In: IEEE Transactions on Knowledge and Data Engineering (2022). https://doi.org/10.1109/TKDE.2022.3148300

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Jiangsu Province under Grant BK20210280, in part by the Fundamental Research Funds for the Central Universities under Grant NS2022089, and in part by the Jiangsu Provincial Innovation and Entrepreneurship Doctor Program under Grant JSSCBS20210185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, S., Xu, J., Li, B., Fu, X. (2023). Predicting Where You Visit in a Surrounding City: A Mobility Knowledge Transfer Framework Based on Cross-City Travelers. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics