Skip to main content

DALedger: Towards High-Performance Transaction Processing for Collaborative Decentralized Applications

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Included in the following conference series:

  • 1946 Accesses

Abstract

Despite recent intensive research, existing blockchain systems still have limitations in supporting decentralized applications. In particular, although existing blockchain systems execute internal transactions of different applications concurrently, it is difficult to process the concurrent control considering both the cross-application transactions and internal transactions. The reason is that each application can only access the transactions related to it, and the conflicts between all transactions cannot be detected by the applications. To improve the concurrency of blockchain systems for decentralized applications, we propose a novel blockchain named as DLedger, which is designed based on the directed acyclic graph ledge structure. DALedger supports the concurrent execution of not only internal transactions in the same application but also internal transactions and cross-DApp transactions. We prove that cycles in the dependency graph must have a special dangerous structure, which can be detected in a single application’s partial dependency graph. Based on that, we propose a novel concurrency control mechanism to resolve concurrency conflicts, while ensuring serializability. We conduct more extensive experiments compared with state-of-the-art blockchain ledgers for decentralized applications. Experimental results show that our method outperforms existing works significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amiri, M.J., Agrawal, D., Abbadi, A.E.: Caper: a cross-application permissioned blockchain. Proc. VLDB Endowment 12(11), 1385–1398 (2019)

    Article  Google Scholar 

  2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)

    Google Scholar 

  3. Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases. ACM Trans. Database Syst. (TODS) 34(4), 1–42 (2009)

    Article  Google Scholar 

  4. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: a framework for analyzing private blockchains. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 1085–1100 (2017)

    Google Scholar 

  5. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Making snapshot isolation serializable. ACM Trans. Database Syst. (TODS) 30(2), 492–528 (2005)

    Article  Google Scholar 

  6. Hammi, M.T., Hammi, B., Bellot, P., Serhrouchni, A.: Bubbles of trust: a decentralized blockchain-based authentication system for IoT. Comput. Secur. 78, 126–142 (2018)

    Article  Google Scholar 

  7. István, Z., Sorniotti, A., Vukolić, M.: Streamchain: do blockchains need blocks? In: Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, pp. 1–6 (2018)

    Google Scholar 

  8. Kokoris-Kogias, E., Alp, E.C., Gasser, L., Jovanovic, P., Syta, E., Ford, B.: Calypso: private data management for decentralized ledgers. Cryptology ePrint Archive (2018)

    Google Scholar 

  9. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 21260 (2008)

    Google Scholar 

  10. Ruan, P., Loghin, D., Ta, Q.T., Zhang, M., Chen, G., Ooi, B.C.: A transactional perspective on execute-order-validate blockchains. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 543–557 (2020)

    Google Scholar 

  11. Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi, D.J.: Calvin: fast distributed transactions for partitioned database systems. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 1–12 (2012)

    Google Scholar 

  12. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_19

    Chapter  Google Scholar 

  13. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)

    Google Scholar 

  14. Xu, C., Zhang, C., Xu, J., Pei, J.: Slimchain: scaling blockchain transactions through off-chain storage and parallel processing. Proc. VLDB Endowment 14(11), 2314–2326 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Zhiwei Zhang is supported by National Key Research and Development Program of China (Grant No. 2020YFB1707900, No. 2021YFB2700700), National Natural Science Foundation of China (Grant No. 62072035), Open Research Projects of Zhejiang Lab (Grant No. 2020KE0AB04) and CCF-Huawei Database System Innovation Research Plan (Grant No. CCF-HuaweiDBIR2021007B). Jiang Xiao is supported by National Key Research and Development Program of China under Grant (No. 2021YFB2700700), Key Research and Development Program of Hubei Province (No. 2021BEA164), National Natural Science Foundation of China (Grant No. 62072197). Ye Yuan is supported by the NSFC (Grant Nos. 61932004, 62225203, U21A20516). Guoren Wang is supported by the NSFC (Grant Nos. 61732003, U2001211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Zhang, Z., Zhao, S., Xiao, J., Yuan, Y., Wang, G. (2023). DALedger: Towards High-Performance Transaction Processing for Collaborative Decentralized Applications. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics