Skip to main content

Privacy Preserving Federated Learning Framework Based on Multi-chain Aggregation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Included in the following conference series:

  • 1916 Accesses

Abstract

Federated Learning is a promising machine learning paradigm for collaborative learning while preserving data privacy. However, attackers can derive the original sensitive data from the model parameters in Federated Learning with the central server because model parameters might leak once the server is attacked. To solve the above server attack challenge, in this paper, we propose a novel server-free Federated Learning framework named MChain-SFFL which performs multi-chain parallel communication in a fully distributed way to update the model to achieve more secure privacy protection. Specifically, MChain-SFFL first randomly selects multiple participants as the chain heads to initiate the model parameter aggregation process. Then MChain-SFFL leverages the single-masking and chained-communication mechanisms to transfer the masked information between participants within each serial chain. In this way, the masked local model parameters are gradually aggregated along the chain nodes. Finally, each chain head broadcasts the aggregated local model to the other nodes and this propagation process stops until convergence. The experimental results demonstrate that for Non-IID data, MChain-SFFL outperforms the compared methods in model accuracy and convergence speed. For IID data, the accuracy and convergence speed of MChain-SFFL are close to Chain-PPFL and FedAVG.

This work was supported by the Natural Science Foundation of Heilongjiang Province of China, LH2022F045.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948. PMLR (2020)

    Google Scholar 

  3. Baraglia, R., Dazzi, P., Mordacchini, M., Ricci, L.: A peer-to-peer recommender system for self-emerging user communities based on gossip overlays. J. Comput. Syst. Sci. 79(2), 291–308 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

    Google Scholar 

  5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  6. Chen, V., Pastro, V., Raykova, M.: Secure computation for machine learning with SPDZ (2019). arXiv preprint arXiv:1901.00329

  7. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency (2016). arXiv preprint arXiv:1610.05492

  8. Kuo, T.T., Ohno-Machado, L.: Modelchain: decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks (2018). arXiv preprint arXiv:1802.01746

  9. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  10. Li, Y., Zhou, Y., Jolfaei, A., Yu, D., Xu, G., Zheng, X.: Privacy-preserving federated learning framework based on chained secure multi-party computing. IEEE Internet Things J. 8(8), 6178–6186 (2020)

    Article  Google Scholar 

  11. Lyu, L., Yu, J., Nandakumar, K., Li, Y., Ma, X., Jin, J.: Towards fair and decentralized privacy-preserving deep learning with blockchain, pp. 1–13 (2019). arXiv preprint arXiv:1906.01167

  12. Mcmahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: Proceeding of the 20th International Conference on Artificial Intelligence and Statistics (2016)

    Google Scholar 

  13. McMahan, H.B., Moore, E., Ramage, D., y Arcas, B.A.: Federated learning of deep networks using model averaging, vol. 2 (2016). arXiv preprint arXiv:1602.05629

  14. Roy, A.G., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C.: Braintorrent: A peer-to-peer environment for decentralized federated learning (2019). arXiv preprint arXiv:1905.06731

  15. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)

    Google Scholar 

  16. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  17. Tran, A.T., Luong, T.D., Karnjana, J., Huynh, V.N.: An efficient approach for privacy preserving decentralized deep learning models based on secure multi-party computation. Neurocomputing 422, 245–262 (2021)

    Article  Google Scholar 

  18. Truex, S., et al.: A hybrid approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pp. 1–11 (2019)

    Google Scholar 

  19. Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., Luo, W.: Deepchain: auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Trans. Dependable Secure Comput. 18(5), 2438–2455 (2019)

    Google Scholar 

  20. Wu, N., Farokhi, F., Smith, D., Kaafar, M.A.: The value of collaboration in convex machine learning with differential privacy. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 304–317. IEEE (2020)

    Google Scholar 

  21. Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., Ludwig, H.: Hybridalpha: an efficient approach for privacy-preserving federated learning. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pp. 13–23 (2019)

    Google Scholar 

  22. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (Sfcs 1986), pp. 162–167. IEEE (1986)

    Google Scholar 

  23. Zhao, H., Wang, C., Zhu, Y., Lin, W.: P2p network based on neighbor-neighbor lists. In: Journal of Physics: Conference Series, vol. 1168. IOP Publishing (2019)

    Google Scholar 

  24. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. Adv. Neural. Inf. Process. Syst. 32, 14747–14756 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghua Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, Y., Zhu, J. (2023). Privacy Preserving Federated Learning Framework Based on Multi-chain Aggregation. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics