Skip to main content

Mining Discriminative Sub-network Pairs in Multi-frequency Brain Functional Networks

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13945))

Included in the following conference series:

  • 1404 Accesses

Abstract

How to use frequent and discriminative pattern for identifying brain disease is a hot topic in the area of brain functional network topology analysis. Most of the existing researches mine discriminative sub-network from frequent patterns, thus ignoring the underlying comparison relationship of the discriminative patterns within different groups. To solve this problem, we propose a discriminative sub-network pair (DSP) to represent both the intra-group commonality and inter-group specificity of networks. The DSP consists of a paired frequent sub-network mined from the brain networks of different groups within the same or similar node-set and different edge-set. Specifically, the signals are decomposed into multiple frequency bands, then the multi-frequency network is constructed to model the brain activities. We construct the DSP with the most significant distinguishing ability from the frequent patterns that frequently appear in each group. A feature vector is constructed for each subject based on these pairs by drawing on the network motif idea and the classifier is used to detect Alzheimer’s disease (AD). Comprehensive experiments on ADNI public datasets demonstrate the effectiveness of DSP in the tasks of AD classification, with an accuracy of 83.33%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achard, S., Salvador, R., Whitcher, B., et al.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1), 63–72 (2006)

    Article  Google Scholar 

  2. Battiston, F., Nicosia, V., Chavez, M., et al.: Multi-layer motif analysis of brain networks. Chaos Interdiscip. J. Nonlinear Sci. 27(4), 047404 (2017). https://doi.org/10.1063/1.4979282

  3. Brookes, M.J., Tewarie, P.K., Hunt, B.A., et al.: A multi-layer network approach to MEG connectivity analysis. Neuroimage 132, 425–438 (2016)

    Article  Google Scholar 

  4. De Vos, F., Koini, M., Schouten, T.M., et al.: A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer’s disease. Neuroimage 167, 62–72 (2018). https://doi.org/10.1016/j.neuroimage.2017.11.025

    Article  Google Scholar 

  5. Du, J., Wang, L., Jie, B., et al.: Network-based classification of ADHD patients using discriminative sub-network selection and graph kernel PCA. Comput. Med. Imaging Graph. 52, 82–88 (2016)

    Article  Google Scholar 

  6. Gifford, G., Crossley, N., Kempton, M.J., et al.: Resting state fMRI based multi-layer network configuration in patients with schizophrenia. NeuroImage Clin. 25, 102169 (2020). https://doi.org/10.1016/j.nicl.2020.102169

  7. Guo, H., Qin, M., Chen, J., et al.: Machine-learning classifier for patients with major depressive disorder: Multi-feature approach based on a high-order minimum spanning tree functional brain network. Comput. Math. Methods Med. 2017, 4820935 (2017). https://doi.org/10.1155/2017/4820935

  8. Hämäläinen, A., Pihlajamäki, M., Tanila, H., et al.: Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol. Aging 28(12), 1889–1903 (2007). https://doi.org/10.1016/j.neurobiolaging.2006.08.008

    Article  Google Scholar 

  9. Huang, G., Zhu, Q., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  10. Kong, X., Yu, P.S.: Brain network analysis: a data mining perspective. ACM SIGKDD Explor. Newsl. 15(2), 30–38 (2014)

    Article  Google Scholar 

  11. Li, W., Antuono, P.G., Xie, C., et al.: Aberrant functional connectivity in papez circuit correlates with memory performance in cognitively intact middle-aged APOE4 carriers. Cortex 57, 167–176 (2014). https://doi.org/10.1016/j.cortex.2014.04.006

    Article  Google Scholar 

  12. Mallat, S.G.: A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989). https://doi.org/10.1109/34.192463

    Article  MATH  Google Scholar 

  13. Martinez-Murcia, F.J., Ortiz, A., Gorriz, J.M., et al.: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders. IEEE J. Biomed. Health Inform. 24(1), 17–26 (2019)

    Article  Google Scholar 

  14. Peng, C., Wu, X., Yuan, W., et al.: MGRFE: Multi-layer recursive feature elimination based on an embedded genetic algorithm for cancer classification. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(2), 621–632 (2019)

    Article  Google Scholar 

  15. Perea, R.D., Rabin, J.S., Fujiyoshi, M.G., et al.: Connectome-derived diffusion characteristics of the fornix in Alzheimer’s disease. NeuroImage Clin. 19, 331–342 (2018). https://doi.org/10.1016/j.nicl.2018.04.029

  16. Preti, G., De, G., Riondato, M.: MaNIACS: approximate mining of frequent subgraph patterns through sampling. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1348–1358 (2021)

    Google Scholar 

  17. Sasai, S., Koike, T., Sugawara, S.K., et al.: Frequency-specific task modulation of human brain functional networks: a fast fMRI study. Neuroimage 224, 117375 (2021). https://doi.org/10.1016/j.neuroimage.2020.117375

    Article  Google Scholar 

  18. Sharma, S., Mandal, P.K.: A comprehensive report on machine learning-based early detection of Alzheimer’s disease using multi-modal neuroimaging data. ACM Comput. Surv. 55(2), 1–44 (2022). https://doi.org/10.1145/3492865

    Article  Google Scholar 

  19. Thomas, A.W., Heekeren, H.R., Müller, K.R., et al.: Analyzing neuroimaging data through recurrent deep learning models. Front. Neurosci. 13, 1321 (2019)

    Article  Google Scholar 

  20. Ting, C.M., Samdin, S.B., Tang, M., et al.: Detecting dynamic community structure in functional brain networks across individuals: a multi-layer approach. IEEE Trans. Med. Imaging 40(2), 468–480 (2020)

    Article  Google Scholar 

  21. Tokuda, T., Yamashita, O., Yoshimoto, J.: Multiple clustering for identifying subject clusters and brain sub-networks using functional connectivity matrices without vectorization. Neural Netw. 142, 269–287 (2021)

    Article  Google Scholar 

  22. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  23. Van Snellenberg, J.X., Slifstein, M., Read, C., et al.: Dynamic shifts in brain network activation during supracapacity working memory task performance. Hum. Brain Mapp. 36(4), 1245–1264 (2015). https://doi.org/10.1002/hbm.22699

    Article  Google Scholar 

  24. Wang, L., Schwedt, T.J., Chong, C.D., et al.: Discriminant subgraph learning from functional brain sensory data. IISE Trans. 54(11), 1084–1097 (2022)

    Article  Google Scholar 

  25. Wu, C.W., Gu, H., Lu, H., et al.: Frequency specificity of functional connectivity in brain networks. Neuroimage 42(3), 1047–1055 (2008)

    Article  Google Scholar 

  26. Wu, D., et al.: Multi-frequency analysis of brain connectivity networks in migraineurs: a magnetoencephalography study. J. Headache Pain 17(1), 1–10 (2016). https://doi.org/10.1186/s10194-016-0636-7

    Article  Google Scholar 

  27. Yan, C., Wang, X., Zuo, X., et al.: DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14(3), 339–351 (2016)

    Article  Google Scholar 

  28. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: 2002 IEEE International Conference on Data Mining (ICDM), pp. 721–724. IEEE (2002)

    Google Scholar 

  29. Zanin, M., Sousa, P., Papo, D., et al.: Optimizing functional network representation of multivariate time series. Sci. Rep. 2(1), 1–6 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (62072089); Fundamental Research Funds for the Central Universities of China (N2116016, N2104001, N2019007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchang Xin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Xin, J., Wang, Z., Wang, X., Dong, S., Wang, Z. (2023). Mining Discriminative Sub-network Pairs in Multi-frequency Brain Functional Networks. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13945. Springer, Cham. https://doi.org/10.1007/978-3-031-30675-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30675-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30674-7

  • Online ISBN: 978-3-031-30675-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics