Skip to main content

Select, Extend, and Generate: Generative Knowledge Selection for Open-Domain Dialogue Response Generation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13945))

Included in the following conference series:

Abstract

Incorporating external commonsense knowledge can enhance machines’ cognition and facilitate informative dialogues. However, current commonsense knowledge-grounded dialogue generation works can only select knowledge from a finite set of candidates retrieved by information retrieval (IR) tools. This paradigm suffers from: 1) The knowledge candidate space is limited because IR tools can only retrieve existing knowledge from the given knowledge base, and the model can only use the retrieved knowledge; 2) The knowledge selection procedure lacks enough interpretability to explain the selected result. Moreover, with the increasing popularity of pre-trained language models (PLMs), many knowledge selection methods of non-PLM models have become incapable because of the input/structure restrictions of PLMs. To this end, we propose a simple but elegant SEG-CKRG, and introduce a novel PLM-friendly Generative Knowledge Selection (GenSel) to select knowledge via a generative procedure. Besides selecting the knowledge facts from the retrieved candidate set, GenSel can also generate newly extended knowledge. GenSel also improves interpretability because the output of the knowledge selection is a natural language text. Finally, SEG-CKRG uses GPT-2 as the backbone language model. Extensive experiments and analyses on a Chinese dataset have verified the superior performance of SEG-CKRG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The translated text is ‘First generate the relevant knowledge based on the left knowledge candidates and the dialogue history, and then generate a response.’.

  2. 2.

    a base size PLM models always has about 100M parameters.

  3. 3.

    https://huggingface.co/.

  4. 4.

    our codes use GRU, the others keep the original setting.

  5. 5.

    5*100 pair-wise comparisons in total.

References

  1. Bai, J., Yang, Z., Liang, X., Wang, W., Li, Z.: Learning to copy coherent knowledge for response generation. In: AAAI 2021 (2021)

    Google Scholar 

  2. Brown, T.B., et al.: Language models are few-shot learners. CoRR abs/2005.14165 (2020). https://arxiv.org/abs/2005.14165

  3. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Wu, D., Carpuat, M., Carreras, X., Vecchi, E.M. (eds.) SSST@EMNLP 2014 (2014)

    Google Scholar 

  4. Cui, L., Wu, Y., Liu, S., Zhang, Y.: Knowledge enhanced fine-tuning for better handling unseen entities in dialogue generation. In: EMNLP 2021, November 2021

    Google Scholar 

  5. Cui, Y., Che, W., Liu, T., Qin, B., Yang, Z.: Pre-training with whole word masking for Chinese bert. IEEE/ACM TASLP (2021)

    Google Scholar 

  6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT 2019 (2019)

    Google Scholar 

  7. Dinan, E., Roller, S., Shuster, K., Fan, A., Auli, M., Weston, J.: Wizard of wikipedia: Knowledge-powered conversational agents. In: ICLR 2019 (2019)

    Google Scholar 

  8. Gu, X., Yoo, K.M., Ha, J.: Dialogbert: Discourse-aware response generation via learning to recover and rank utterances. In: AAAI2021 (2021)

    Google Scholar 

  9. Ippolito, D., Kriz, R., Sedoc, J., Kustikova, M., Callison-Burch, C.: Comparison of diverse decoding methods from conditional language models. In: ACL 2019, July 2019

    Google Scholar 

  10. Kim, B., Ahn, J., Kim, G.: Sequential latent knowledge selection for knowledge-grounded dialogue. In: ICLR 2020 (2020)

    Google Scholar 

  11. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL 2020 (2020)

    Google Scholar 

  12. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objective function for neural conversation models. In: NAACL 2016, June 2016

    Google Scholar 

  13. Li, J., Monroe, W., Jurafsky, D.: A simple, fast diverse decoding algorithm for neural generation. CoRR abs/1611.08562 (2016). http://arxiv.org/abs/1611.08562

  14. Li, J., Tang, T., Zhao, W.X., Nie, J., Wen, J.: A survey of pretrained language models based text generation. CoRR abs/2201.05273 (2022). https://arxiv.org/abs/2201.05273

  15. Li, J., Tang, T., Zhao, W.X., Wei, Z., Yuan, N.J., Wen, J.R.: Few-shot knowledge graph-to-text generation with pretrained language models. In: Findings of ACL-IJCNLP 2021 (Aug 2021)

    Google Scholar 

  16. Li, J., Tang, T., Zhao, W.X., Wen, J.: Pretrained language models for text generation: A survey. CoRR abs/2105.10311 (2021). https://arxiv.org/abs/2105.10311

  17. Liang, Y., Meng, F., Zhang, Y., Chen, Y., Xu, J., Zhou, J.: Infusing multi-source knowledge with heterogeneous graph neural network for emotional conversation generation. In: AAAI 2021 (2021)

    Google Scholar 

  18. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81. Association for Computational Linguistics, Barcelona, Spain, July 2004

    Google Scholar 

  19. Lin, T., Wang, Y., Liu, X., Qiu, X.: A survey of transformers. CoRR abs/2106.04554 (2021). https://arxiv.org/abs/2106.04554

  20. Lin, X., Jian, W., He, J., Wang, T., Chu, W.: Generating informative conversational response using recurrent knowledge-interaction and knowledge-copy. In: ACL 2020 (2020)

    Google Scholar 

  21. Liu, C.W., Lowe, R., Serban, I., Noseworthy, M., Charlin, L., Pineau, J.: How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. In: EMNLP 2016, November 2016

    Google Scholar 

  22. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR abs/1907.11692 (2019). http://arxiv.org/abs/1907.11692

  23. Lotfi, E., Bruyn, M.D., Buhmann, J., Daelemans, W.: Teach me what to say and I will learn what to pick: Unsupervised knowledge selection through response generation with pretrained generative models. CoRR abs/2110.02067 (2021). https://arxiv.org/abs/2110.02067

  24. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: EMNLP 2015 (2015)

    Google Scholar 

  25. Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318. ACL (2002)

    Google Scholar 

  26. Qin, L., Liu, Y., Che, W., Wen, H., Li, Y., Liu, T.: Entity-consistent end-to-end task-oriented dialogue system with KB retriever. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) EMNLP-IJCNLP 2019 (2019)

    Google Scholar 

  27. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)

    Google Scholar 

  28. Ren, P., Chen, Z., Monz, C., Ma, J., de Rijke, M.: Thinking globally, acting locally: Distantly supervised global-to-local knowledge selection for background based conversation. In: AAAI 2020, pp. 8697–8704 (2020)

    Google Scholar 

  29. See, A., Liu, P.J., Manning, C.D.: Get to the point: Summarization with pointer-generator networks. In: Barzilay, R., Kan, M. (eds.) ACL 2017 (2017). 10.18653/v1/P17-1099

    Google Scholar 

  30. Serban, I.V., et al.: A hierarchical latent variable encoder-decoder model for generating dialogues. In: AAAI 2017 (2017)

    Google Scholar 

  31. Shao, Y., et al.: CPT: a pre-trained unbalanced transformer for both Chinese language understanding and generation. CoRR abs/2109.05729 (2021). https://arxiv.org/abs/2109.05729

  32. Speer, R., Havasi, C.: Conceptnet 5: a large semantic network for relational knowledge. In: The People’s Web Meets NLP, Collaboratively Constructed Language Resources (2013)

    Google Scholar 

  33. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  34. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR 2018 (2018)

    Google Scholar 

  35. Vinyals, O., Le, Q.V.: A neural conversational model. CoRR abs/1506.05869 (2015). http://arxiv.org/abs/1506.05869

  36. Wang, S., et al.: Modeling text-visual mutual dependency for multi-modal dialog generation. CoRR abs/2105.14445 (2021). https://arxiv.org/abs/2105.14445

  37. Wang, Y., et al.: A large-scale chinese short-text conversation dataset. In: Zhu, X., Zhang, M., Hong, Yu., He, R. (eds.) NLPCC 2020. LNCS (LNAI), vol. 12430, pp. 91–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60450-9_8

    Chapter  Google Scholar 

  38. Wu, S., Li, Y., Xue, P., Zhang, D., Wu, Z.: Section-aware commonsense knowledge-grounded dialogue generation with pre-trained language model. In: COLING 2022, pp. 521–531. International Committee on Computational Linguistics (2022). https://aclanthology.org/2022.coling-1.43

  39. Wu, S., Li, Y., Zhang, D., Wu, Z.: Improving knowledge-aware dialogue response generation by using human-written prototype dialogues. In: Cohn, T., He, Y., Liu, Y. (eds.) Findings of EMNLP 2020 (2020)

    Google Scholar 

  40. Wu, S., Li, Y., Zhang, D., Wu, Z.: Generating rational commonsense knowledge-aware dialogue responses with channel-aware knowledge fusing network. IEEE ACM Trans. Audio Speech Lang. Process. 30, 3230–3239 (2022). https://doi.org/10.1109/TASLP.2022.3199649

  41. Wu, S., Li, Y., Zhang, D., Zhou, Y., Wu, Z.: Diverse and informative dialogue generation with context-specific commonsense knowledge awareness. In: ACL 202 (2020)

    Google Scholar 

  42. Wu, S., Wang, M., Li, Y., Zhang, D., Wu, Z.: Improving the applicability of knowledge-enhanced dialogue generation systems by using heterogeneous knowledge from multiple sources. In: WSDM 22 (2022)

    Google Scholar 

  43. Yan, R.: “Chitty-chitty-chat bot”: deep learning for conversational AI. In: IJCAI 2018 (2018)

    Google Scholar 

  44. Young, T., Cambria, E., Chaturvedi, I., Zhou, H., Biswas, S., Huang, M.: Augmenting end-to-end dialogue systems with commonsense knowledge. In: AAAI 2018 (2018)

    Google Scholar 

  45. Yu, W., et al.: A survey of knowledge-enhanced text generation. CoRR abs/2010.04389 (2020). https://arxiv.org/abs/2010.04389

  46. Zhang, H., Liu, Z., Xiong, C., Liu, Z.: Grounded conversation generation as guided traverses in commonsense knowledge graphs. In: ACL 2020 (2020)

    Google Scholar 

  47. Zhang, Y., et al.: DIALOGPT: large-scale generative pre-training for conversational response generation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, July 2020

    Google Scholar 

  48. Zhao, X., Wu, W., Tao, C., Xu, C., Zhao, D., Yan, R.: Low-resource knowledge-grounded dialogue generation. In: ICLR 2020 (2020)

    Google Scholar 

  49. Zhao, X., Wu, W., Xu, C., Tao, C., Zhao, D., Yan, R.: Knowledge-grounded dialogue generation with pre-trained language models. In: EMNLP 2020 (2020)

    Google Scholar 

  50. Zhou, H., Young, T., Huang, M., Zhao, H., Xu, J., Zhu, X.: Commonsense knowledge aware conversation generation with graph attention. In: IJCAI 2018 (2018)

    Google Scholar 

  51. Zhou, P., et al.: Commonsense-focused dialogues for response generation: an empirical study. In: SIGdial 2021 (2021)

    Google Scholar 

  52. Zhou, P., et al.: Think before you speak: explicitly generating implicit commonsense knowledge for response generation. In: ACL 2022, May 2022

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, S., Xue, P., Tao, Y., Li, Y., Wu, Z. (2023). Select, Extend, and Generate: Generative Knowledge Selection for Open-Domain Dialogue Response Generation. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13945. Springer, Cham. https://doi.org/10.1007/978-3-031-30675-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30675-4_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30674-7

  • Online ISBN: 978-3-031-30675-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics