Skip to main content

A Novel Deep Learning Framework for Interpretable Drug-Target Interaction Prediction with Attention and Multi-task Mechanism

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13946))

Included in the following conference series:

Abstract

The measurement of drug-target interaction(DTI) is a major task in the field of drug discovery, where drugs are typically small molecules and targets are typically proteins. Traditional DTI measurements in the lab are time consuming and expensive. DTI can be predicted through the use of computational methods like ligand similarity comparison and molecular docking simulation. However, these methods strongly rely on domain expertise. Deep learning has recently advanced, and some deep learning techniques are being used to predict DTI. These deep learning ways can extract drug and target features automatically without domain knowledge and produce good results. In this work, we propose an end-to-end deep learning framework to predict DTI. The unsupervised method Mol2Vec with self-attention is used to extract the drug features. To extract the target features, we pre-train a BERT model, which is the state-of-the-art model for many text comprehension tasks in NLP. In order to improve the generalization ability of the model, we introduce a multi-task learning mechanism by using two transformer encoder-decoders. As far as we know, we are the first to apply Mol2Vec, BERT, attention mechanism and multi-task mechanism to one model. The experiment results show that our model outperforms other latest deep learning methods. Finally, we interpret our model through a case study by visualizing the predicted binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bank, P.D.: Protein data bank. Nat. New Biol. 233, 223 (1971)

    Article  Google Scholar 

  2. Caruna, R.: Multitask learning: a knowledge-based source of inductive bias. In: Machine Learning: Proceedings of the Tenth International Conference, pp. 41–48 (1993)

    Google Scholar 

  3. Chen, L., et al.: Transformercpi: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics 36(16), 4406–4414 (2020)

    Article  Google Scholar 

  4. Chen, X., et al.: Drug-target interaction prediction: databases, web servers and computational models. Briefings Bioinf. 17(4), 696–712 (2016)

    Article  Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Ding, H., Takigawa, I., Mamitsuka, H., Zhu, S.: Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Briefings Bioinf. 15(5), 734–747 (2014)

    Article  Google Scholar 

  7. Ewing, T.J., Makino, S., Skillman, A.G., Kuntz, I.D.: Dock 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput.-Aided Mol. Des. 15(5), 411–428 (2001)

    Google Scholar 

  8. Ezzat, A., Wu, M., Li, X.L., Kwoh, C.K.: Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey. Briefings Bioinf. 20(4), 1337–1357 (2019)

    Article  Google Scholar 

  9. Faulon, J.L., Misra, M., Martin, S., Sale, K., Sapra, R.: Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor. Bioinformatics 24(2), 225–233 (2008)

    Article  Google Scholar 

  10. Gao, K.Y., Fokoue, A., Luo, H., Iyengar, A., Dey, S., Zhang, P., et al.: Interpretable drug target prediction using deep neural representation. In: IJCAI, vol. 2018, pp. 3371–3377 (2018)

    Google Scholar 

  11. Gilson, M.K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., Chong, J.: Bindingdb in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 44(D1), D1045–D1053 (2016)

    Article  Google Scholar 

  12. Jaeger, S., Fulle, S., Turk, S.: Mol2vec: unsupervised machine learning approach with chemical intuition. J. Chem. Inf. Model. 58(1), 27–35 (2018)

    Article  Google Scholar 

  13. Jiang, D., et al.: Interactiongraphnet: a novel and efficient deep graph representation learning framework for accurate protein-ligand interaction predictions. J. Med. Chem. 64(24), 18209–18232 (2021)

    Article  MathSciNet  Google Scholar 

  14. Karimi, M., Wu, D., Wang, Z., Shen, Y.: Deepaffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18), 3329–3338 (2019)

    Article  Google Scholar 

  15. Luong, M.T., Le, Q.V., Sutskever, I., Vinyals, O., Kaiser, L.: Multi-task sequence to sequence learning. arXiv preprint arXiv:1511.06114 (2015)

  16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  17. Nguyen, T., Le, H., Quinn, T.P., Nguyen, T., Le, T.D., Venkatesh, S.: Graphdta: Predicting drug-target binding affinity with graph neural networks. Bioinformatics 37(8), 1140–1147 (2021)

    Article  Google Scholar 

  18. Öztürk, H., Özgür, A., Ozkirimli, E.: Deepdta: deep drug-target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018)

    Article  Google Scholar 

  19. Tsubaki, M., Tomii, K., Sese, J.: Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309–318 (2019)

    Article  Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  21. Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted boltzmann machines. Bioinformatics 29(13), i126–i134 (2013)

    Article  Google Scholar 

  22. Wang, Z., Liang, L., Yin, Z., Lin, J.: Improving chemical similarity ensemble approach in target prediction. J. Cheminformatics 8(1), 1–10 (2016)

    Article  Google Scholar 

  23. Weininger, D.: Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Google Scholar 

  24. Yamanishi, Y., Kotera, M., Kanehisa, M., Goto, S.: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12), i246–i254 (2010)

    Article  Google Scholar 

  25. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning. Knowl.-Based Syst. 216, 106775 (2021)

    Article  Google Scholar 

  26. Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. arXiv preprint arXiv:1510.03820 (2015)

  27. Zhao, Q., Xiao, F., Yang, M., Li, Y., Wang, J.: Attentiondta: prediction of drug-target binding affinity using attention model. In: 2019 IEEE international conference on bioinformatics and biomedicine (BIBM). pp. 64–69. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Y., Tang, P., Qiu, W., Wang, H., Guo, J., Huang, Z. (2023). A Novel Deep Learning Framework for Interpretable Drug-Target Interaction Prediction with Attention and Multi-task Mechanism. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13946. Springer, Cham. https://doi.org/10.1007/978-3-031-30678-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30678-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30677-8

  • Online ISBN: 978-3-031-30678-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics