Skip to main content

Process Drift Detection in Event Logs with Graph Convolutional Networks

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13946))

Included in the following conference series:

  • 1524 Accesses

Abstract

The only constant is change. Drift detection in process mining is a family of methods to detect changes by analyzing event logs to ensure the accuracy and reliability of business processes in process-aware information systems (e.g., ERP systems). However, artificial feature selection is still a mountain to climb in existing methods, which requires high domain knowledge for users. In this paper, we propose a novel approach by using Graph convolutional networks for Drifts Detection in the event log, we name it GDD. Specifically, 1) we transform event sequences into two directed graphs by using two consecutive time windows, and construct the line graphs for the directed graphs to capture the orders between different activities; 2) we use graph convolutional networks to capture the features in these graphs, and augment the original graphs with virtual nodes to represent the latent aspects of the graphs; 3) we calculate the distances between virtual nodes, and use the K-means algorithm to find the outliers that are considered as candidate change points. Then, a filter mechanism is used to confirm the actual change points. The experiments on simulated event logs and real-life event logs confirmed the improvements of GDD compared with the baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/lll-lin/GDD.

  2. 2.

    https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436.

  3. 3.

    https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Prepaid_Travel_Costs/12696722?backTo=/collections/_/5065541.

References

  1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, New York (2011)

    Book  MATH  Google Scholar 

  2. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6

    Chapter  Google Scholar 

  3. Guo, Q., Wen, L., Wang, J., Yan, Z., Yu, P.S.: Mining invisible tasks in non-free-choice constructs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 109–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_7

    Chapter  Google Scholar 

  4. Sander, J.J., Leemans, A.F.S., Aalst, W.M.P.: Earth moves’ stochastic conformance checking. In: International Conference on Business Process Management. Vienna, Austria, pp. 127–143 (2019)

    Google Scholar 

  5. Fahland, D., Aalst, W.M.P.: Model repair - aligning process models to reality. Inf. Syst. 47(1), 220–243 (2015)

    Article  Google Scholar 

  6. Bose, R.P.J.C., Aalst, W.M.P., et al.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2014)

    Article  Google Scholar 

  7. Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling concept drift in process mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_30

    Chapter  Google Scholar 

  8. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_27

    Chapter  Google Scholar 

  9. Ostovar, A., Maaradji, A., Rosa, M.L., et al.: Detecting drift from event streams of unpredictable business processes. In: International Conference on Conceptual Modeling. Gifu, Japan, pp. 330–346 (2016)

    Google Scholar 

  10. Ostovar, A., Leemans, S., Rosa, M.L.: Robust drift characterization from event streams of business processes. ACM Trans. Knowl. Disc. Data 14(3), 1–57 (2020)

    Article  Google Scholar 

  11. Zheng, C., Wen, L., Wang, J.: Detecting process concept drifts from event logs. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 524–542. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_33

    Chapter  Google Scholar 

  12. Lu, Y., Chen, Q., Poon, S.: A robust and accurate approach to detect process drifts from event streams. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 383–399. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_24

    Chapter  Google Scholar 

  13. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Article  Google Scholar 

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: The 5th International Conference on Learning Representations. Toulon, France, pp. 1–14 (2017)

    Google Scholar 

  15. Maggi, F.M., Burattin, A., Cimitile, M., Sperduti, A.: Online process discovery to detect concept drifts in LTL-based declarative process models. In: Meersman, R., et al. (eds.) OTM 2013. LNCS, vol. 8185, pp. 94–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41030-7_7

    Chapter  Google Scholar 

  16. Lin, L., Wen, L., Lin, L., Pei, J., Yang, H.: LCDD: detecting business process drifts based on local completeness. IEEE Trans. Serv. Comput. 15(4), 2086–2099 (2022)

    Article  Google Scholar 

  17. Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift in process mining. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 90–102. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34156-4_10

    Chapter  Google Scholar 

  18. Kumar, M.V.M., Thomas, L., Annappa, B.: Capturing the sudden concept drift in process mining, pp. 132–143. Algorithms Theories Anal. Event Data, Brussels, Belgium (2015)

    Google Scholar 

  19. Yeshchenko, A., Di Ciccio, C., Mendling, J., et al.: Visual drift detection for sequence data analysis of business processes. IEEE Trans. Vis. Comput. Graph. (2021). https://doi.org/10.1109/TVCG.2021.3050071

    Article  Google Scholar 

  20. Jiang, X., Ji, P., Li, S.: CensNet: convolution with edge-node switching in graph neural networks. In: International Joint Conferences on Artificial Intelligence (IJCAI), pp. 2656–2662 (2019)

    Google Scholar 

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  22. Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence similarity. In: The Association for the Advancement of Artificial Intelligence (AAAI), pp. 2786–2792 (2016)

    Google Scholar 

  23. Pham, T., Tran, T., Dam, H., Venkatesh, S.: Graph classification via deep learning with virtual nodes. arXiv:1708.04357 (2017)

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program of China (2018YFB1800403), the general project numbered KM202310028003 of Beijing Municipal Education Commission, the National Natural Science Foundation of China (61872252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, L. et al. (2023). Process Drift Detection in Event Logs with Graph Convolutional Networks. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13946. Springer, Cham. https://doi.org/10.1007/978-3-031-30678-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30678-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30677-8

  • Online ISBN: 978-3-031-30678-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics