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Abstract. Since clicks usually contain heavy noise, increasing research
efforts have been devoted to modeling implicit negative user behaviors
(i.e., non-clicks). However, they either rely on explicit negative user be-
haviors (e.g., dislikes) or simply treat non-clicks as negative feedback,
failing to learn negative user interests comprehensively. In such situa-
tions, users may experience fatigue because of seeing too many simi-
lar recommendations. In this paper, we propose Fatigue-Aware Network
(FAN), a novel CTR model that directly perceives user fatigue from non-
clicks. Specifically, we first apply Fourier Transformation to the time se-
ries generated from non-clicks, obtaining its frequency spectrum which
contains comprehensive information about user fatigue. Then the fre-
quency spectrum is modulated by category information of the target
item to model the bias that both the upper bound of fatigue and users’
patience is different for different categories. Moreover, a gating network
is adopted to model the confidence of user fatigue and an auxiliary task
is designed to guide the learning of user fatigue, so we can obtain a
well-learned fatigue representation and combine it with user interests for
the final CTR prediction. Experimental results on real-world datasets
validate the superiority of FAN and online A/B tests also show FAN
outperforms representative CTR models significantly.

Keywords: Recommender System · Click-Through Rate Prediction ·
User Fatigue.

1 Introduction

Recommender Systems (RS) are becoming increasingly indispensable to help
users discover their preferred items in situations of information overload, there-
fore improving the user experience and delivering new business value [21,24].
Typically, an industrial e-commerce recommender system consists of matching
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and ranking. The matching stage aims to retrieve candidate items related to
user interests [13,5], after which the ranking stage predicts precise probabili-
ties of users interacting with these candidate items, e.g., Click-Through Rate
(CTR) [26] and Conversion Rate (CVR) [17,12]. In this paper, we focus on the
Click-Through Rate (CTR) prediction task of the ranking stage.

Most existing CTR methods [7,26,1] in e-commerce recommendation mainly
rely on implicit positive feedback (i.e., clicks) as a positive label and infer users’
current interests since clicks can be easily collected in practice. However, click
behaviors usually contain heavy noise [16,18] since there are gaps between clicks
and users’ real preferences, and outdated interests may exist in historical user
behaviors [9]. Moreover, positive feedback is biased toward the choices that the
RS offers to its users, as clicks can only be done on items that are exposed to
users. As a result, simply focusing on implicit positive feedback will lead to bi-
ased modeling of user interests and homogeneous and myopic recommendations,
which may harm user experiences [25].

Recently, several researchers [6,10] notice the drawbacks of merely relying on
implicit positive feedback and attempt to leverage the more abundant implicit
negative feedback (i.e., non-clicks) to learn negative user interests. The key idea
is to introduce regularization in the loss function to enforce that the representa-
tion of positive feedback should be far away from the non-clicks. However, a user
doesn’t click an item does not necessarily mean the user doesn’t like the item.
Maybe some similar items are displayed nearby, or maybe the exposed items are
simply not well noticed. Therefore, ignoring noise in non-clicks may lead to con-
flicts when modeling user interests and result in inaccurate recommendations.
Another line of works [20,3,19] tries to make use of explicit negative feedback
(e.g., dislikes) to distill negative user interests from implicit feedback (i.e., non-
clicks and clicks). However, explicit negative user behaviors are extremely scarce
in e-commerce RS. Less than 0.01% of impressions will result in dislikes, which
are less than one-tenth of purchases, according to statistics of our e-commerce
platform.

In such situations, models are incapable of learning negative user interests
comprehensively and users may experience fatigue due to seeing too many sim-
ilar recommendations. One way to handle fatigue is to recall more new items
at the matching stage, which usually doesn’t take effect directly because most
existing CTR methods are not friendly to items that users didn’t see before. An-
other common solution is the explore and exploit paradigm [2,8] that considers
multiple factors including relevance, novelty, and fatigue [11,4]. However, they
simply model user fatigue by statistics such as the number of similar items shown
before but ignore the time-frequency distribution of similar recommendations,
which causes the loss of information. Besides, it is believable that user interests
and user fatigue can affect each other, so the trade-off between exploration and
exploitation may not be an optimal choice.

Based on these observations, we propose a novel CTR model: Fatigue-Aware
Network (FAN) which can perceive user fatigue from non-clicks more compre-
hensively, therefore achieving improvements in both CTR prediction and user
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experience. Naturally, we believe that user fatigue should be modeled at the
category level because the item level is too fine-grained and the e-commerce RS
usually avoids recommending items recommended recently. Given a pair of user
and item, we extract non-clicks of the same category in recent days and com-
pute the number of this category in each recommendation request, generating
a time series that contains rich information about user fatigue. Then we devise
a Fatigue Representation Module (FRM) which applies Fast Fourier Transfor-
mation (FFT) [14] to the time series to obtain its frequency spectrum, which
contains comprehensive information about time-frequency distribution of similar
recommendations. Considering the bias that both the upper bounds of fatigue
and users’ patience are different for different categories (e.g., digital products
and clothes), we propose to modulate the frequency spectrum by category infor-
mation. Moreover, a gating network is adopted to model the confidence of user
fatigue according to user activeness and an auxiliary task is designed to guide
the learning of FRM. In this way, we can obtain a well-learned fatigue represen-
tation. At last, user fatigue is incorporated with user interests to make the final
CTR prediction so we can avoid too many similar recommendations and achieve
more accurate predictions. Our main contributions are summarized as follows:

– We investigate the difficulties of modeling implicit negative user behaviors
(i.e., non-clicks) for e-commerce recommendation, and propose to model
user fatigue explicitly in CTR prediction to avoid users from seeing too
many similar recommendations.

– We propose a novel FAN model that directly perceives user fatigue from non-
clicks. Benefiting from the frequency-domain representation and category
modulation, we are capable of modeling user fatigue comprehensively and
accurately. Besides, with an elaborated auxiliary task, FAN can pay attention
well to what users are not interested in.

– Experiments on real-world datasets demonstrate the superiority of our FAN
model over representative methods, and online tests further show that FAN
not only improves model performance but also brings better user experiences.
We also conduct extensive analyses to confirm the effectiveness of our design
for modeling user fatigue. The code is publicly available1.

2 Proposed Method

2.1 Model Input

In CTR prediction, the model takes input as (x, y) ∼ (X,Y ), where x is the
feature and y ∈ {0, 1} is the click label. Specifically, the features in this work
consist of five parts: 1) user behavior sequence xseq; 2) user features xu including
the user profile and user statistic features; 3) item features xi such as item
id, category, brand, and related statistic features; 4) context features xc such
as position and time information; 5) fatigue time series S, i.e., a sequence of
statistics of non-clicks on target category, which is first proposed in this work
and will be detailed below.

1 https://github.com/AaronPanXiaoFeng/FAN
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Fig. 1. Framework of the proposed Fatigue-Aware Network (FAN), which consists of
the User Interest Module (UIM) and Fatigue Representation Module (FRM). The
FRM includes three key components: Time-Frequency Transformation Net (TFTN),
Category Modulation Net (CMN), and User Confidence Net (UCN).

Now we describe the extraction process of fatigue time series. Given a pair
of user and item, we first retrieve recommendation requests of the user in recent
days and order them by time. For each request, we compute the number of
non-clicks which has the same category as the target item, obtaining a time
series S = {s1, s2, ..., sT }, where sT denotes the number of non-clicks on the
target category in T -th request and T is the number of requests. Elements in S
can be regarded as raw indicators of fatigue in the time domain. To ensure the
correlation between S and fatigue, we adopt the following rules for special cases
in the extraction process: 1) If there are clicks on the target category in the i-th
request, we set si to 0 because it’s more related to the user’s positive interest
and contributes less to fatigue; 2) If there is no item of the target category in a
request, we ignore this request because it is not relevant to the target fatigue. By
aggregating non-clicks on request granularity and organizing statistics in order
of time, the raw information about fatigue is more confident and comprehensive.

2.2 User Interest Module

As shown in Figure 1, the input features of UIM consist of xu, xi, xc and
xseq, which are detailed in Section 2.1. They can be further grouped into two
kinds of features: categorical features and numerical features. We discrete the
numerical features based on their boundary values and transform them into the
categorical type. Then each categorical feature is encoded as a one-hot vector.
Due to the sparseness nature of one-hot encoding, they are further processed
by a Shared Embedding Layer so we obtain the embedded user features, item
features, context features, and user behavior sequence, i.e., eu, ei, ec and eseq =
{ei1, ..., eil}, where eil denotes the item embedding of l-th user behavior and l is
the sequence length.
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For user behavior sequence, we perform three kinds of attention calculation.
Firstly a multi-head self-attention [15] is calculated over eseq to model user
preference from multiple views of interest and êseq = {êi1, ..., êil} is the output.
Secondly, user attention au is calculated to mine personalized information with
eu attending to êseq. Thirdly, target attention ai is employed to activate histor-
ical interests related to the target item with ei attending to êseq. To preserve
the original information for further learning of interactions, we concatenate ei,
eu and ec with au and ai, and feed them into the MainNet, i.e., a Multi-Layer
Perception (MLP). Meanwhile, we feed eu and ec into another MLP (i.e., the Bi-
asNet) to model the bias that different users in different contexts usually behave
differently even to similar items. Finally, the outputs of MainNet and BiasNet
are concatenated to obtain the user-item representation rui.

2.3 Fatigue Representation Module

Time-Frequency Transformation Net. Given the fatigue time series S, we
argue that it’s more beneficial to model user fatigue in the frequency domain
than the time domain for two reasons: 1) S only contains magnitude informa-
tion of non-clicks at each request, while in the frequency domain, we can observe
both amplitude (related to magnitude) and phase (related to position) for each
frequency component, which is more beneficial to capture the periodic evolu-
tion of fatigue; 2) In the frequency domain, we can conveniently distinguish the
influence of different frequency components for more elaborate modeling.

Motivated by this, we perform N -point FFT to transform S into the fre-
quency domain:

A,ϕ = FFT (S),

A = [A1, ..., Ak, ..., AN ] ∈ RN ,
ϕ = [ϕ1, ..., ϕk, ..., ϕN ] ∈ RN ,

(1)

where A and ϕ are the amplitude and phase vectors respectively.
To capture the different influences of different frequency components adap-

tively and obtain a high-order representation of amplitude and phase, we feed
A and ϕ into a two-layer MLP respectively. Then, we perform an element-wise
multiplication of the results to model the interaction of amplitude and phase
and obtain a combination representation:

A′ = MLPA(A) ∈ RN ,
ϕ′ = MLPϕ(ϕ) ∈ RN ,
F = A′ ⊗ϕ′ ∈ RN ,

(2)

F contains comprehensive information about user fatigue, which is considered as
a raw fatigue representation. It’s noteworthy that MLPA and MLPϕ are used
to learn that influence of different frequency components is different. For the
amplitude, components at low frequencies are more robust, while components
at high frequencies may contain more noise and should be attenuated. For the
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phase, components at low frequencies are more important than those at high
frequencies, because the position of high-frequency signals is less sensitive to
phase than that of low-frequency signals.

Category Modulation Net. Intuitively, both the upper bound of fatigue and
users’ patience is different for different categories. Taking inspiration from the
spirit of APG [23], we propose to generate model parameters dynamically based
on different instances, which helps to capture custom patterns and enhance the
model capacity. Thus, we can model user fatigue adaptively for different cate-
gories. Specifically, for each category, we formalize the upper bound as a bias
vector bc, and the users’ patience as a weight vector wc, which are generated
from category information of the target item respectively:

bc = MLPb(ec) ∈ RN ,
wc = MLPα(ec) ∈ RN ,

(3)

where ec is the embedding of category features, including category ID and the
corresponding statistical features which can be obtained from item features xi.
To model our intuition, we modulate the raw fatigue representation F as:

Fc = bc −wc ⊗ F ∈ RN , (4)

Compared with F , Fc considers the discrepancy of fatigue across different cat-
egories and therefore represents fatigue more accurately.

User Confidence Net. Naturally, users with high activeness generate more
feedback, which makes modeling user fatigue more confident, and vice versa.
Therefore, we employ a gating network to model the confidence of user fatigue
according to user activeness. Specifically, we pass eua , the embedded user active-
ness generated from user features xu, to a MLP to produce the confidence factor
αu, after which element-wise multiplication is performed between αu and Fc,
i.e.,

αu = MLPu(eua) ∈ RN ,
Fuc = αu ⊗ Fc ∈ RN ,

(5)

Through the aforementioned operations, we obtain a fine-tuned fatigue repre-
sentation Fuc which considers the category and the user biases simultaneously.

2.4 Training

On the top of the UIM and FRM, the user-item representation rui and the
fatigue representation Fuc are combined by concatenation and passed to a MLP
to make the final CTR prediction:

ŷ = fθ(x) = MLPo(concat(rui,Fuc)), (6)
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The last layer of MLPo uses Sigmoid as activation function to project the pre-
diction to the click probability. We adopt the widely-used logloss as the main
loss, which is calculated as follows:

Lm = − 1

|D|
∑

(x,y)∈D

(y log ŷ + (1− y) log(1− ŷ)), (7)

where D denotes training set and |D| denotes the number of samples in D.
Moreover, to guide the learning of FRM, we design an additional auxiliary

task, i.e., predicting the degree of fatigue:

ŷf = MLPf (Fuc), (8)

where MLPf (·) is a 3-layer MLP of which the last layer uses Sigmoid as activa-
tion function. To find a confident fatigue label for ŷf , we take a user’s behaviors
in the next three days into consideration. If a user clicks on the target cate-
gory, we assume that the user has not been over-exposed and mark the fatigue
label as negative. If the user doesn’t click the target category after a certain
number of exposures, we mark the fatigue label as positive. Training samples in
other situations are not used in the fatigue prediction task. By aggregating user
behaviors over an appropriate time window, we can obtain a relatively stable
and confident fatigue label yf on the target category. Then we calculate logloss
between ŷf and yf , and formulate the final loss as follows:

Lf = − 1

|D|
∑

(x,yf )∈D

(yf log ŷf + (1− yf ) log(1− ŷf )),

L = Lm + βLf .

(9)

where β is a scaling hyperparameter that gradually increases during the training
process, and the optimal maximum value of β is determined by experiments.
With the auxiliary loss Lf , the FRM is guided to pay attention to what users
are not interested in, therefore learning user fatigue better.

3 Experiments

3.1 Experimental Setup

Datasets. We collect and sample online service logs2 from the recommendation
scenarios in Tmall Mobile between 2022/08/24 and 2022/09/26 as our exper-
imental datasets. Then we split the data into two non-overlapped parts. The
data between 2022/08/24 and 2022/09/25 is used for training while the data in
2022/09/26 is collected for testing. Table 1 summarizes the detailed statistics of
our datasets.

2 The data collection is under the application’s user service agreement and users’
private information is protected.
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Table 1. Statistics of the established dataset.

#Dataset #Users #Items #Exposures #Clicks #Purchases
train 9.40M 7.39M 835.76M 66.62M 277.22K
test 842.71K 2.70M 26.62M 2.15M 10.82K

Evaluation Metrics. For the offline comparison, we use Area Under ROC
Curve (AUC) as the evaluation metric. As for the online A/B testing, we use
PCTR = p(click|impression) and the average number of user clicks (IPV),
which are widely adopted in industrial recommender systems. Moreover, we use
Leaf Categories Exposed Number per user (LCEN) and Leaf Categories Clicked
Number per user (LCCN) to measure the diversity of recommendations.

Competitors. As a representative in CTR prediction, DIN [26] is chosen to
be the base model. Besides, we compare the performance of our proposed FAN
model with a series of state-of-the-art methods that model both clicks and non-
clicks, i.e., DFN [20], DUMN [3] and Gama [22]. Additionally, to demonstrate
the effectiveness of our designed structure in FAN, we also conduct several ab-
lation experiments:

– FAN w/o FRM (UIM): As a substructure of FAN, UIM can be used as
a deep CTR model by adding prediction layers, which adopts the attention
mechanism [15] to model user positive behavior sequence.

– FAN w/o TFTN: To prove the necessity of the TFTN, we remove the
TFTN module and directly make use of the input fatigue time series instead.

– FAN w/o CMN: In order to verify the gain of the Category Modulation
Net(CMN) of FRM to the FAN, we remove the CMN and directly process
the output of TFTN via element-wise product with the output of UCN.

– FAN w/o UCN: Similar to FAN w/o CMN, we test the performance of
UCN by removing it from FRM.

Implementation Details. All models share the same features, except that
DIN ignores non-clicks and DFN and DUMN additionally adopt explicit nega-
tive feedback of users. All the models are implemented in distributed Tensorflow
1.4 and trained with 10 parameter servers and 4 Nvidia Tesla V100 16GB GPUs.
Item ID has an embedding size of 64, category ID and brand ID have an embed-
ding size of 32 while 8 for the other categorical features. We use 8-head attention
structures in UIM with a hidden size of 128 and 32-point FFT in FRM. Adagrad
optimizer with a learning rate of 0.01 and a mini-batch size of 1024 is used for
training. During training, β increases linearly from 0.01 to 0.5 with training steps
increasing. We report the results of each method under its empirically optimal
hyper-parameters settings.

3.2 Overall Results

For offline evaluation, each model has repeated five times and the best version of
each model is selected for online A/B tests, which lasted 3 days from 2022/10/05
to 2022/10/08. The offline and online comparison results are presented in Table 2
and the major observations can be summarized as follows:
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Table 2. Offline and online results of comparison experiments

Model
Offline Online Gain

AUC (mean±std.) PCTR IPV LCEN LCCN
DIN(Base Model) 0.7178±0.00247 0.00% 0.00% 0.00% 0.00%
DFN 0.7194±0.00585 -0.30% -0.31% +0.85% +0.53%
DUMN 0.7218±0.00429 +0.17% -0.74% +0.59% +1.15%
Gama 0.7225±0.00472 +0.89% +0.42% -0.26% +0.57%
FAN w/o FRM(UIM) 0.7193±0.00238 -0.85% +0.79% +2.52% +1.41%
FAN(ours) 0.7249±0.00176 +1.63% +1.09% +11.13% +3.29%

1. Compared with DIN, the UIM model performs better in the offline evalua-
tion. Although the PCTR of UIM is slightly worse, it can recommend more
abundant categories than DIN and attract more IPV, implying that our
design for modeling positive user interests is effective.

2. The DFN and DUMN perform better than DIN on the offline AUC metric by
distilling implicit negative feedback via explicit negative feedback. However,
users’ explicit negative feedback are extremely scarce in e-commerce, which is
insufficient for learning negative user interests comprehensively. As a result,
DFN and DUMN can’t perform well in online recommendation scenarios.

3. The Gama model slightly outperforms DIN, DFN, and DUMN on AUC,
PCTR, and IPV by denoising implicit negative feedback in the frequency
domain. However, it still focuses on modeling what users are interested in,
so it’s incapable of improving the diversity of recommendations. In such
situations, users may be overexposed to too many similar recommendations.

4. For both offline and online, our FAN model yields the best performance. It’s
noteworthy that FAN not only improves the efficiency of online traffic (i.e.,
PCTR, and IPV) but also achieves impressive gains in diversity. Benefit-
ing from the frequency-domain representation and category modulation, our
modeling of fatigue is much more comprehensive and accurate, which helps
users avoid seeing too many similar recommendations and explore more new
items. Besides, with an elaborated auxiliary task, FAN pays more attention
to what users are not interested in than the Gama model.

3.3 Ablation Study

To demonstrate the effectiveness of the designed structure in FAN, we also con-
duct a series of ablation experiments as detailed in Section 3.1. The results are
detailed in Table 3. Totally speaking, removing FRM or key substructures of
FRM from FAN leads to the decline of AUC, illustrating the effectiveness of our
model design. The other supplementary conclusions are summarized as follows:

1. The comparison between FAN w/o TFTN and FAN shows that TFTN can
achieve better use of the fatigue time series. With the frequency spectrum
extracted by FFT, TFTN further models different impacts of different fre-
quency components, helping to learn a better fatigue representation for the
final prediction.
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2. With CMN removed, FAN w/o CMN suffers a significant performance degra-
dation that is almost comparable to removing the whole FRM. This obser-
vation proves the correctness of our intuition that both the upper bounds of
fatigue and users’ patience are different for different categories, and confirms
the necessity of category modulation while modeling user fatigue.

3. Comparing FAN w/o UCN with FAN, a degradation of AUC is observed,
implying that considering user confidence is beneficial to the learning of
fatigue representation.

Table 3. Offline results of ablation experiments

Model AUC (mean±std.)
FAN w/o FRM(UIM) 0.7193±0.00238
FAN w/o TFTN 0.7225±0.00135
FAN w/o CMN 0.7199±0.00147
FAN w/o UCN 0.7237±0.00187
FAN 0.7249±0.00176

3.4 Effectiveness Analysis

To further analyze how TFTN and FRM work, we visualize the output of the
TFTN and FRM. Specifically, we randomly select 1000 samples and feed them to
FAN, extracting F and Fuc for each sample. Then, we draw mean and standard
deviation diagrams for F and Fuc respectively, as shown in Figure 2. Since the
symmetry characteristic of FFT, Figure 2(a) shows an approximately symmet-
rical structure. Output values between different dimensions are quite different.
Frequency components around the 6-th and 15-th dimensions have weaker re-
sponses while the other has a higher response, implying that our TFTN act as
a second-order bandstop filter in FRM. From Figure 2(b), we can observe that
the symmetrical structure no longer exists, and different frequency components
are further activated. This observation implies that our devised CMN and UCN
achieve the ability of frequency selection. Moreover, the standard deviation of
some frequency components becomes larger while some become smaller, indi-
cating that FRM further weakens the unimportant components and strengthens
important components.
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Fig. 2. Mean and standard deviation of TFTN and FRM output
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4 Conclusion

In this paper, we investigate the difficulties of modeling implicit negative user
behaviors (i.e., non-clicks) in e-commerce and propose a novel model named
FAN which captures the negative user interests in the target category from a
perspective of fatigue modeling. In FAN, we apply FFT to obtain time-frequency
information from the corresponding sequence of non-clicks, which is then used
to learn the high-order fatigue representation with category bias and user con-
fidence considered. Moreover, an auxiliary task is elaborately designed to guide
the learning of the FRM. In this way, a high-quality fatigue representation can be
learned to facilitate improving both the CTR performance and user experience,
which is validated by real-world offline datasets as well as online A/B testing.
The extensive analysis further confirms the effectiveness of our model design.
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