Skip to main content

The Concept of a New Neural Map for Clustering, Data Visualization and Prediction with Probability Distribution Approximation

  • Conference paper
  • First Online:
Information Systems (EMCIS 2022)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 464))

  • 1320 Accesses

Abstract

The paper submits a proposition of a new data analysis tool (named PDCM – Probability Distribution generating and Clustering Maps) constructed in the form of an extended neural map and dedicated to a variety of tasks, such as specific clustering, visualization, prediction (together with its possible visual analysis and justification) and generation of approximated Bayesian a posteriori probability density distribution for dependent variable. Basic theoretical aspects concerning the structure and training process of the proposed model have been presented. Also, research involving application of the PDCM method for real estate market data (Boston dataset) has been shown together with promising research results and conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Assylbekov, Z., Melnykov, I., Bekishev, R., Baltabayeva, A., Bissengaliyeva, D., Mamlin, E.: Detecting value-added tax evasion by business entities of Kazakhstan. In: International Conference on Intelligent Decision Technologies, pp. 37–49. Springer, Cham (2016)

    Google Scholar 

  2. Chang, F.J., Huang, C.W., Cheng, S.T., Chang, L.C.: Conservation of groundwater from over-exploitation – scientific analyses for groundwater resources management. Sci. Total Environ. 598, 828–838 (2017)

    Article  Google Scholar 

  3. Dameri, R.P., Garelli, R., Resta, M.: Neural networks in accounting: clustering firm performance using financial reporting data. J. Inf. Syst. 34(2), 149–166 (2020)

    Google Scholar 

  4. Dembczyński, K., Kotłowski, W., Słowiński, R.: Solving regression by learning an ensemble of decision rules. In: Artificial Intelligence and Soft Computing ICAISC 2008, pp. 533–544. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  5. Hossu, C.A., Ioja, I.C., Nita, M.R., Hartel, T., Badiu, D.L., Hersperger, A.M.: Need for a cross-sector approach in protected area management. Land Use Policy 69, 586–597 (2017)

    Article  Google Scholar 

  6. Iamandi, I.E., Constantin, L.G., Munteanu, S.M., Cernat-Gruici, B.: Mapping the ESG behavior of European companies. A holistic Kohonen approach. Sustainability 11, 3276 (2019)

    Article  Google Scholar 

  7. Kimura, M., et al.: Application of the self-organizing map in the classification of natural antioxidants in commercial biodiesel. Biofuels 12, 673–678 (2018)

    Article  Google Scholar 

  8. Kohonen, T.: Self-Organizing Maps, Series in Information Sciences (31). Springer-Verlag, Heidelberg (1995)

    Google Scholar 

  9. Le, T., Pardo, P., Claster, W.: Application of Artificial Neural Network in Social Media Data Analysis: A Case of Lodging Business in Philadelphia, in Artificial Neural Network Modelling, pp. 369–376. Springer, Cham (2016)

    Google Scholar 

  10. Liang, Y.M., Yin, X.F., Chang, D.O.U., Yang, L.I.U.: Application of SOM Neural Network in the Construction of Urban Ramp Driving Cycle, DEStech Transactions on Computer Science and Engineering, International Conference on Artificial Intelligence and Computing Science (ICAICS 2019), pp. 240–244 (2019)

    Google Scholar 

  11. Lis, B., Szczepaniak. P.S., Tomczyk .A.: Multi-layer Kohonen network and texture recognition. In: Soft Computing Tools, Techniques and Applications. AOW EXIT, Warsaw (2004)

    Google Scholar 

  12. Liu, J., Xu, L.: Improvement of som classification algorithm and application effect analysis in intrusion detection. In: Patnaik, S., Jain, V. (eds.) Recent Developments in Intelligent Computing, Communication and Devices. AISC, vol. 752, pp. 559–565. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-8944-2_65

    Chapter  Google Scholar 

  13. Lydia, E.L., Bindu, G.H., Sirisham, A., Kiran, P.P.: Electronic governance of housing price using Boston dataset implementing through deep learning mechanism. Int. J. Recent Technol. Eng. 7(6S2), 560–563 (2019)

    Google Scholar 

  14. Merkl, D., Rauber, A.: Alternative ways for cluster visualization in self-organizing maps. In: Proceedings of the Workshop on Self-Organizing Maps (WSOM’97), Helsinki (1997)

    Google Scholar 

  15. Morajda, J., Domaradzki, R.: Application of cluster analysis performed by SOM neural network to the creation of financial transaction strategies. J. Appl. Comput. Sci, 13(1), 87–98 (2005)

    Google Scholar 

  16. Morajda, J., Paliwoda-Pękosz, G.: An enhancement of Kohonen neural networks for predictive analytics: Self-Organizing Prediction Maps. In: AMCIS 2020 Proceedings, vol. 6 (2020)

    Google Scholar 

  17. Morajda, J., Paliwoda-Pękosz, G.: A concept of FLOPM: neural maps with floating nodes for classification and prediction. In: AMCIS 2021 Proceedings, vol. 16 (2021)

    Google Scholar 

  18. Moshou, D.: Artificial Neural Maps. Applications. VDM Verlag Dr. Müller, Saarbrücken, Concepts, Architectures (2009)

    Google Scholar 

  19. Mükkulainen, R.: Script recognition with hierarchical feature maps. Connection Sci. 2, 83–101 (1990)

    Article  Google Scholar 

  20. Nan, F., Li, Y., Jia, X., Dong, L., Chen, Y.: Application of improved SOM network in gene data cluster analysis. Measurement 145, 370–378 (2019)

    Article  Google Scholar 

  21. Niska, H., Serkkola, A.: Data analytics approach to create waste generation profiles for waste management and collection. Waste Manage. 77, 477–485 (2018)

    Article  Google Scholar 

  22. Padulano, R., Del Giudice, G.: Pattern detection and scaling laws of daily water demand by SOM: an application to the WDN of Naples, Italy. Water Resour. Manag. 33(2), 739–755 (2019)

    Article  Google Scholar 

  23. Peng, J., Xia, Y.: A cutting algorithm for the minimum sum-of-squared error clustering. In: Proceedings of the Fifth SIAM International Conference on Data Mining. Newport Beach, California, pp. 150–160 (2005)

    Google Scholar 

  24. Rashkovan, V., Pokidin, D.: Ukrainian banks’ business models clustering: application of Kohonen neural networks. Visnyk of the National Bank of Ukraine 2016(238), 13–38 (2016)

    Article  Google Scholar 

  25. Rojek, I.: Technological process planning by the use of neural networks. AI EDAM 31(1), 1–15 (2017)

    Google Scholar 

  26. Ruck, D.W., Rogers, S.K., Kabrisky, M., Oxley, M.E., Suter, B.W.: The multilayered perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans. Neural Networks 1, 296–298 (1990)

    Article  Google Scholar 

  27. Wang, L., Wu, C.: Business failure prediction based on two-stage selective ensemble with manifold learning algorithm and kernel-based fuzzy self-organizing map. Knowl.-Based Syst. 121, 99–110 (2017)

    Article  Google Scholar 

  28. Wierzchoń, T., Kłopotek, M.: Algorithms of Cluster Analysis. Institute of Computer Science, Polish Academy of Sciences, Warsaw (2015)

    MATH  Google Scholar 

Download references

Acknowledgements

The publication is financed by the Krakow University of Economics under the program “Support for Conference Activity - WAK-2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Morajda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morajda, J. (2023). The Concept of a New Neural Map for Clustering, Data Visualization and Prediction with Probability Distribution Approximation. In: Papadaki, M., Rupino da Cunha, P., Themistocleous, M., Christodoulou, K. (eds) Information Systems. EMCIS 2022. Lecture Notes in Business Information Processing, vol 464. Springer, Cham. https://doi.org/10.1007/978-3-031-30694-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30694-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30693-8

  • Online ISBN: 978-3-031-30694-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics