Skip to main content

Mining Contextual Process Models Using Sensors Data: A Case of Daily Activities in Smart Home

  • Conference paper
  • First Online:
Information Systems (EMCIS 2022)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 464))

  • 1401 Accesses

Abstract

Different techniques are used by companies to enhance their processes. Process mining (PM) is one of these techniques that relies on the user activity logs recorded by information systems to discover the process model, to check conformance with the prescribed process, to enhance the process, and to recommend or guess the next user activity. From another hand, many contextual factors such as time, location, weather, and user’s profile influence the user activities. However, PM techniques are mainly activity-oriented and do not take into consideration the contextual environment. Our main goal is to enrich process models obtained using process mining technics with contextual information issued from sensors data and to construct contextual process models for a better process discovery, conformance checking, and recommendations. In this paper, we test the feasibility to integrate events logs with sensor logs to provide meaningful results. We use existing datasets with events and sensors logs about daily activities in Smart Home to construct a process model enriched by contextual information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van Der Aalst, W.M.: Process mining: data science in action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

  2. Elali, R.: An intention mining approach using ontology for contextual recommendations. In: Proceedings of the Doctoral Consortium Papers Presented at the 33rd International Conference on Advanced Information Systems Engineering (CAiSE 2021), Melbourne, Australia, June 28–July 2 2021. CEUR Workshop Proceedings, vol. 2906, pp. 69–78 (2021). https://ceur-ws.org/

  3. Lautenbacher, F., Bauer, B., Seitz, C.: Semantic business process modeling - benefits and capability. AAAI Spring Symposium - Technical Report, pp. 71–76. (2008)

    Google Scholar 

  4. Alves de Medeiros, A.K., Van Der Aalst, W.M.: Process mining towards semantics. In: Dillon, T.S., Chang, E., Meersman, R., Sycara, K. (eds.) Advances in Web Semantics I. LNCS, vol. 4891, pp. 35–80. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89784-2_3

    Chapter  Google Scholar 

  5. Okoye, K., Tawil, A.R.H., Naeem, U., Lamine, E.: Discovery and enhancement of learning model analysis through semantic process mining. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 8(2016), 93–114 (2016)

    Google Scholar 

  6. Ingvaldsen, J.E., Gulla, J.A.: Industrial application of semantic process mining. Enterp. Inf. Syst. 6(2), 139–163 (2012)

    Article  Google Scholar 

  7. Koschmider, A., Leotta, F., Serral, E., Torres, V.: BP-Meets-IoT 2021 Challenge Dataset (2021)

    Google Scholar 

  8. Zaki, M.J., Meira, W.: Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  9. Aher, S.B., Lobo, L.M.R.J.: A comparative study of association rule algorithms for course recommender system in e-learning. Int. J. Comput. Appl. 39(1), 48–52 (2012). https://doi.org/10.5120/4788-7021

    Article  Google Scholar 

  10. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  11. Disco: https://fluxicon.com/disco/

  12. Van Der Aalst, W.M., Dustdar, S.: Process mining put into context. IEEE Internet Comput. 16(1), 82–86 (2012). https://doi.org/10.1109/MIC.2012.12

    Article  Google Scholar 

  13. de Medeiros, A.K.A., Van Der Aalst, W.M., Pedrinaci, C.: Semantic process mining tools: core building blocks (2008)

    Google Scholar 

  14. de Medeiros, A.K.A., et al.: An outlook on semantic business process mining and monitoring. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007. LNCS, vol. 4806, pp. 1244–1255. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76890-6_52

    Chapter  Google Scholar 

  15. Rabbi, F., Fatemi, B., Maccaull, W.: Analysis of patient pathways with contextual process mining (2022)

    Google Scholar 

  16. Leonardi, G., Striani, M., Quaglini, S., Cavallini, A., Montani, S.: Towards semantic process mining through knowledge-based trace abstraction. In: Ceravolo, P., van Keulen, M., Stoffel, K. (eds.) SIMPDA 2017. LNBIP, vol. 340, pp. 45–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11638-5_3

    Chapter  Google Scholar 

  17. Okoye, K., Islam, S., Naeem, U., Sharif, M.S., Azam, M.A., Karami, A.: The application of a semantic-based process mining framework on a learning process domain. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2018. AISC, vol. 868, pp. 1381–1403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01054-6_96

    Chapter  Google Scholar 

  18. Theodoropoulou, G., Bousdekis, A., Miaoulis, G., Voulodimos, A.: Process mining for activities of daily living in smart homecare. In: 24th Pan-Hellenic Conference on Informatics (PCI 2020). Association for Computing Machinery, New York, NY, USA, pp. 197–201 (2020). https://doi.org/10.1145/3437120.3437306

  19. Diaz, O.E., Perez, M.G., Lascano, J.E.: Literature review about intention mining in information systems. J. Comput. Inf. Syst. 61(4), 295–304 (2021). https://doi.org/10.1080/08874417.2019.1633569

    Article  Google Scholar 

  20. Khodabandelou, G., Hug, C., Deneckère, R., Salinesi, C.: Process mining versus intention mining. In: Nurcan, S., et al. (eds.) BPMDS/EMMSAD -2013. LNBIP, vol. 147, pp. 466–480. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38484-4_33

    Chapter  Google Scholar 

  21. Compagno, D., Epure, E.V., Deneckere-Lebas, R., Salinesi, C.: Exploring digital conversation corpora with process mining. Corpus Pragmatics 2(2), 193–215 (2018). https://doi.org/10.1007/s41701-018-0030-6

    Article  Google Scholar 

  22. Khodabandelou, G.: Contextual recommendations using intention mining on process traces: doctoral consortium paper. In: IEEE 7th International Conference on Research Challenges in Information Science (RCIS), pp. 1–6. IEEE (2013)

    Google Scholar 

  23. Hug, C., Salinesi, C., Deneckère, R., Lamassé, S.: Process modeling for humanities: tracing and analyzing scientific processes. In: Revive the Past: Proceedings of the 39th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, pp. 245–255 (2011)

    Google Scholar 

  24. Kornyshova, E., Deneckere, R., Claudepierre, B.: Towards method component contextualization. Int. J. Inf. Syst. Model. Design 2(4), 49–81 (2011)

    Article  Google Scholar 

  25. Kornyshova, E., Deneckère, R., Claudepierre, B.: Contextualization of method components. In: 2010 Fourth International Conference on Research Challenges in Information Science (RCIS), pp. 235–246. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramona Elali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elali, R., Kornyshova, E., Deneckère, R., Salinesi, C. (2023). Mining Contextual Process Models Using Sensors Data: A Case of Daily Activities in Smart Home. In: Papadaki, M., Rupino da Cunha, P., Themistocleous, M., Christodoulou, K. (eds) Information Systems. EMCIS 2022. Lecture Notes in Business Information Processing, vol 464. Springer, Cham. https://doi.org/10.1007/978-3-031-30694-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30694-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30693-8

  • Online ISBN: 978-3-031-30694-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics