Skip to main content

Millimeter Waves and High-Throughput Satellites: The New Frontier Toward Terabit Connectivity in the Sky

  • Chapter
  • First Online:
A Roadmap to Future Space Connectivity

Abstract

Today, connectivity is a pivotal aspect of our lives, basically a right of Humanity, and a fundamental ally towards a sustainable future. This calls for a disruptive, rather than evolutionary and predictable, approach for the definition of future space technologies and architectures. Based on the “connecting the unconnected” paradigm, these systems shall both supply a wider coverage and satisfy the ever increasing demand for larger capacities and cheaper services. In this framework, the enhanced system flexibility, reconfigurability, and sustainability to provide user-tailored services shall be a cornerstone in the design and definition of technologies and architectures for future Satellite Communications (SatCom) systems. In this Chapter, we explore several technologies and architectures for the next generation of space systems based on High Throughput Satellites and mmWaves. In fact, both the widespread use of mmWave links and HTS-based architectures could play a key role to make the magic blend for “connecting the unconnected” become a reality in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(K\leq N_B\) in the beam space and, when \(K=N_B\), one user per beam is served.

  2. 2.

    In Eq. (1.1), FFR is assumed. To take into account a frequency reuse factor greater than one, it is sufficient to select the rows of \({\mathbf {H}}^{(beam)}\), \(\mathbf {x}\), and \(\mathbf {z}\) corresponding to the desired colour.

  3. 3.

    In the following, we drop the beam/feed indication in the equations since the algorithms and the normalisations are applicable to both cases.

  4. 4.

    A BHTC is the transmission channel in charge of serving one cluster.

References

  1. M. Ruggieri, S. De Fina, M. Pratesi, A. Salome’, E. Saggese, C. Bonifazi, The W-band data collection experiment of the DAVID mission. IEEE Trans. AES 38(4), 1377–1387 (2002)

    Google Scholar 

  2. T. Rossi, M. De Sanctis, E. Cianca, C. Fragale, M. Ruggieri, H. Fenech, Future space-based communications infrastructures based on High Throughput Satellites and Software Defined Networking, in IEEE International Symposium on Systems Engineering (ISSE)(2015), pp. 332–337. https://doi.org/10.1109/SysEng.2015.7302778

  3. Y. Guan, F. Geng, J. H. Saleh, Review of high throughput satellites: market disruptions, affordability-throughput map, and the cost per bit/second decision tree, in IEEE AES Magazine (2019), pp- 64–80. https://doi.org/10.1109/MAES.2019.2916506

  4. I. Philbeck, Connecting the unconnected: working together to achieve connect 2020 agenda targets, in Broadband Commission and the World Economic Forum at Davos Annual Meeting 2017, ITU (2017). Background paper to the special session

    Google Scholar 

  5. https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx

  6. ESA, First W-band transmission from space (2021). https://artes.esa.int/news/first-wband-transmission-space

  7. C. Sacchi, T. Rossi, M. Ruggieri, F. Granelli, Efficient waveform design for high-bit-rate W-band satellite transmissions. IEEE Trans. Aerosp. Electron. Syst. 47(2), 974–995 (2011). https://doi.org/10.1109/TAES.2011.5751238

    Article  Google Scholar 

  8. J. Nessel, R. Acosta, F.A. Miranda, Preliminary experiments for the assessment of V/W-band links for space-earth communications, in Proceedings AP-S International Symposium, IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (2013). https://doi.org/10.1109/APS.2013.6711467

  9. M.B. Jiménez, D. Fernandez, J.E. Rivadeneira, L. Bellido, A. Cardenas, A survey of the main security issues and solutions for the SDN architecture, in IEEE Access (2021), pp. 122016–122038. https://doi.org/10.1109/ACCESS.2021.3109564

  10. T. Rossi, C. Fragale, M. De Sanctis, E. Cianca, M. Ruggieri, H. Fenech, Software defined networking and high throughput satellite: the best matching for space-based communications infrastructures, in 21st Ka and Broadband Communications Conference, Bologna (Italy), On line Proceedings (2015). ISSN -2573–6124

    Google Scholar 

  11. M. Ruggieri, T. Rossi, New fascinating challenges for space systems: softwarization, ai-based robotization and sustainability: which role for cubeSats? in Advances in the Astronautical Sciences, vol. 173 (2020), pp. 609–615. ISBN 978-0-87703-671-5, paper AAS 20-268, ISSN 10816003, 00653438. Proceedings for the 5th IAA Conference on University Satellite Missions and CubeSat Workshop, 28–31 January 2020, Rome, Italy

    Google Scholar 

  12. Y. Bi, G. Han. S. Xu, X. Wang, C. Lin, Z. Yu, P. Sun, Software defined space-terrestrial integrated networks: architecture, challenges, and solutions. IEEE Netw. 22–28 (2019). https://doi.org/10.1109/MNET.2018.1800193

  13. A. Papa, T. de Cola, P. Vizarreta, M. He, C. Mas-Machuca, W. Kellerer, Design and evaluation of reconfigurable SDN LEO constellations. IEEE Trans. Netw. Serv. Manag. 17(3), 1432–1445 (2020). https://doi.org/10.1109/TNSM.2020.2993400

    Article  Google Scholar 

  14. H. Maune, K. H. Hubner, G. Gold, Considerations for V- and W-band inter-satellite links, in IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON) (2022). https://doi.org/10.1109/WAMICON53991.2022.9786212

  15. A.U. Chaudhry, H. Yanikomeroglu, Temporary laser inter-satellite links in free-space optical satellite networks. IEEE Open J. Commun. Soc. 3, 1413–1445 (2022). https://doi.org/10.1109/OJCOMS.2022.3198391

    Article  Google Scholar 

  16. https://www.copernicus.eu/en

  17. K. Han, B. Xu, F. Shao, W. Gong, Q. Ren, J. Chang, An adaptive topology optimization strategy for inter-satellite links in GNSS. IEEE Trans. Aerosp. Electron. Syst. 10(9), 1–12 (2021). https://doi.org/10.1109/TAES.2022.3181555

    Google Scholar 

  18. A. Le Pera, F. Forni, M. Grossi, M. Lucente, V. Palma, T. Rossi, M. Ruggieri, Digital transparent processor for satellite telecommunication services, in IEEE Aerospace Conference (2007), pp. 1–9. https://doi.org/10.1109/AERO.2007.352932

  19. V. Sulli, D. Giancristofaro, F. Santucci, M. Faccio, G. Marini, Design of digital satellite processors: from communications link performance to hardware complexity. IEEE J. Sel. Areas Commun. 36(2), 338–350 (2018). https://doi.org/10.1109/JSAC.2018.2804198

    Article  Google Scholar 

  20. ITU-R Report S.2461-0. spectrum needs for the fixed-satellite services in the 51.4-52.4 GHz band (2019)

    Google Scholar 

  21. ITU-R Recommendation V.431-8. Nomenclature of the frequency and wavelength bands used in telecommunications (2015)

    Google Scholar 

  22. ITU Radio Regulations, Articles, Edition of 2021

    Google Scholar 

  23. ECC ERC, Decision of 19 October 2000 on the Shared Use of the Band 17.7–19.7 GHz by the Fixed Service and Earth Stations of the Fixed-Satellite Service (Space-to-Earth) (2000)

    Google Scholar 

  24. Y.-C. Liang, Dynamic Spectrum Management - From Cognitive Radio to Blockchain and Artificial Intelligence, 1st edn. (Springer Singapore, 2020)

    Google Scholar 

  25. S.K. Sharma, S. Chatzinotas, B. Ottersten, Cognitive radio techniques for satellite communication systems, in 2013 IEEE 78th Vehicular Technology Conference (VTC Fall) (2013), pp. 1–5

    Google Scholar 

  26. M. H’́oyhty’́a et al., Database-assisted spectrum sharing in satellite communications: a survey. IEEE Access 5, 25322–25341 (2017)

    Google Scholar 

  27. S.K. Sharma, S. Chatzinotas, B. Ottersten, In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites. Int. J. Sat. Commun. Netw. 31(1), (2016)

    Google Scholar 

  28. V. Icolari, A. Guidotti, D. Tarchi, A. Vanelli-Coralli, An interference estimation technique for Satellite cognitive radio systems, in 2015 IEEE International Conference on Communications (ICC) (2015), pp. 892–897. https://doi.org/10.1109/ICC.2015.7248435

  29. S. Chatzinotas, B. Evans, A. Guidotti, V. Icolari, E. Lagunas, S. Maleki, S.K. Sharma, D. Tarchi, P. Thompson, A. Vanelli-Coralli, Cognitive approaches to enhance spectrum availability for satellite systems. Int. J. Sat. Commun. Netw. 35(5), 407–442 (2016)

    Article  Google Scholar 

  30. G. Zheng, S. Chatzinotas, B. Ottersten, Generic optimization of linear precoding in multibeam satellite systems. IEEE Trans. Wirel. Commun. 11(6), 2308–2320 (2012). https://doi.org/10.1109/TWC.2012.040412.111629

    Article  Google Scholar 

  31. P. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis, R. De Gaudenzi, MIMO over satellite: a review. IEEE Commun. Surv. Tutorials 13(1), 27–51 (2011). https://doi.org/10.1109/SURV.2011.033110.00072

    Article  Google Scholar 

  32. P. Angeletti, R. De Gaudenzi, A pragmatic approach to massive MIMO for broadband communication satellites. IEEE Access 8, 132212–132236 (2020). https://doi.org/10.1109/ACCESS.2020.3009850

    Article  Google Scholar 

  33. R. Muharar, J. Evans, Downlink Beamforming with transmit-side channel correlation: a large system analysis, in 2011 IEEE International Conference on Communications (ICC) (2011), pp. 1–5 . https://doi.org/10.1109/icc.2011.5962672

  34. A. Guidotti, A. Vanelli-Coralli, Design trade-off analysis of precoding multi-beam satellite communication systems, in 2021 IEEE Aerospace Conference (2021), pp. 1–12. https://doi.org/10.1109/AERO50100.2021.9438169

  35. A. Guidotti, C. Amatetti, F. Arnal, B. Chamaillard, A. Vanelli-Coralli, Location-assisted precoding in 5G LEO systems: architectures and performances, in 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit) (2022), pp. 154–159. https://doi.org/10.1109/EuCNC/6GSummit54941.2022.9815611

  36. EC Horizon 2020 SPACE-29-TEC-2020 Project DYNASAT, Dynamic Spectrum Sharing and Bandwidth-Efficient Techniques for High-Throughput MIMO Satellite Systems. Deliverable D3.2 “Bandwidth Efficient Techniques Design” (2022)

    Google Scholar 

  37. EC Horizon 2020 SPACE-29-TEC-2020 Project DYNASAT, Dynamic Spectrum Sharing and Bandwidth-Efficient Techniques for High-Throughput MIMO Satellite Systems. Deliverable D3.5 “Bandwidth Efficient Techniques Evaluation” (2022)

    Google Scholar 

  38. V. Joroughi et al., Designing joint precoding and beamforming in a multiple gateway multibeam satellite system, in IEEE WCNC 2018 (2018)

    Google Scholar 

  39. C. Mosquera et al., Distributed precoding systems in multi-gateway multibeam satellites: regularization and coarse beamforming. IEEE Trans. Commun. 17(10), (2018)

    Google Scholar 

  40. G. Zheng, S. Chatzinotas, B. Ottersten, Multi-gateway cooperation in multibeam satellite systems, in IEEE PIMRC 2012 (2012)

    Google Scholar 

  41. A. Guidotti, A. Vanelli-Coralli, Clustering strategies for multicast precoding in multibeam satellite systems. Int. J. Sat. Commun. Netw. 38, 85–104 (2019)

    Article  Google Scholar 

  42. DVB Document A171-2, Implementation guidelines for the second generation system for broadcasting, interactive services, news gathering and other broadband satellite applications, Part 2: S2 Extensions (DVB-S2X) (2020)

    Google Scholar 

  43. J.H. Puneeth et al., Satellite Beam Densification for High-Demand Areas, in ASMS/SPSC 2022 (2022)

    Google Scholar 

  44. E. Cianca, T. Rossi, A. Yahalom, Y. Pinhasi, J. Farserotu, C. Sacchi, EHF for satellite communications: the new broadband frontier. Proc. IEEE 99(11), 1858–1881 (2011). https://doi.org/10.1109/JPROC.2011.2158765

    Article  Google Scholar 

  45. B.F. Beidas, Radio-frequency impairments compensation in ultra high-throughput satellite systems. IEEE Trans. Commun. 67(9), 6025–6038 (2019). https://doi.org/10.1109/TCOMM.2019.2926031

    Article  Google Scholar 

  46. M. De Sanctis, E. Cianca, T. Rossi, C. Sacchi, L. Mucchi, R. Prasad, Waveform design solutions for EHF broadband satellite communications. IEEE Commun. Mag. 53(3), 18–23 (2015). https://doi.org/10.1109/MCOM.2015.7060477

    Article  Google Scholar 

  47. 3GPP, Solutions for NR to support non-terrestrial networks (NTN). TR 38.821 v16.0.0 (2020)

    Google Scholar 

  48. R. Mulinde, T.F. Rahman, C. Sacchi, Constant-envelope SC-FDMA for nonlinear satellite channels, in Proceedings of IEEE Global Communications Conference (GLOBECOM) (2013), pp. 2939–2944. https://doi.org/10.1109/GLOCOM.2013.6831521

  49. M. De Sanctis, T. Rossi, L. Rizzo, M. Ruggieri, G. Codispoti, Optimization of ACM algorithms over Q/V-band satellite channels with the Alphasat Aldo Paraboni P/L, in Proceedings of IEEE Aerospace Conference (2015), pp. 1–9

    Google Scholar 

  50. R. He, D. Yang, H. Wang, J. Kuang, Adaptive hierarchical coding and modulation scheme over satellite channels. IET Commun. 13(17), 2834–2839 (2019)

    Article  Google Scholar 

  51. S. Mukherjee, M. De Sanctis, T. Rossi, E. Cianca, M. Ruggieri, R. Prasad, Mode switching algorithms for DVB-S2 links in W band, in IEEE Global Telecommunications Conference GLOBECOM (2010), pp. 1–5. https://doi.org/10.1109/GLOCOM.2010.5683138

  52. T. Rossi, M. De Sanctis, F. Maggio, Evaluation of outage probability for satellite systems exploiting smart gateway configurations. IEEE Commun. Lett. 21(7), 1541–1544.

    Google Scholar 

  53. S. Gu, J. Jiao, Z. Huang, S. Wu, Q. Zhang, ARMA-based adaptive coding transmission over millimeter-wave channel for integrated satellite-terrestrial networks. IEEE Access 6, 21635–21645 (2018). https://doi.org/10.1109/ACCESS.2018.2825256

    Article  Google Scholar 

  54. M. Shirvanimoghaddam, Y. Li, B. Vucetic, Near-capacity adaptive analog fountain codes for wireless channels. IEEE Commun. Lett. 17(12), 2241–2244 (2013). https://doi.org/10.1109/LCOMM.2013.101813.131972

    Article  Google Scholar 

  55. C. Xu et al., Adaptive coherent/non-coherent single/multiple-antenna aided channel coded ground-to-air aeronautical communication. IEEE Trans. Commun. 67(2), 1099–1116 (2019). https://doi.org/10.1109/TCOMM.2018.2877471

    Article  Google Scholar 

  56. G.D. Surabhi, M.K. Ramachandran, A. Chockalingam, OTFS modulation with phase noise in mmWave communications, in IEEE 89th vehicular technology conference (VTC2019-Spring) (2019), pp. 1–5. https://doi.org/10.1109/VTCSpring.2019.8746382

  57. Z. Wei, W. Yuan, S. Li, J. Yuan, G. Bharatula, R. Hadani, L.H. Hanzo, Orthogonal time-frequency space modulation: a promising next-generation waveform. IEEE Wirel. Commun. 28, 136–144 (2021)

    Article  Google Scholar 

  58. T. Li, R. He, B. Ai, M. Yang, Z. Zhong, H, Zhang, OTFS modulation performance in a satellite-to-ground channel at sub-6-GHz and millimeter-wave bands with high mobility. Front. Inf. Technol. Electron. Eng. 22, 517–526 (2021). https://doi.org/10.1631/FITEE.2000468

    Article  Google Scholar 

  59. B.F. Beidas, Intermodulation distortion in multicarrier satellite systems: analysis and turbo Volterra equalization. IEEE Trans. Commun. 59(6), 1580–1590 (2011)

    Article  Google Scholar 

  60. E. Kofidis, V. Dalakas, Y. Kopsinis, S. Theodoridis, A novel efficient cluster-based MLSE equalizer for satellite communication channels with M-QAM signaling. EURASIP J. Appl. Signal Process. pp. 1–16 (2006)

    Google Scholar 

  61. S. Dimitrov, Non-linear distortion cancellation and symbol-based equalization in satellite forward links. IEEE Trans. Wirel. Commun. 16(7), 4489–4502 (2017)

    Article  Google Scholar 

  62. B.F. Beidas, R.I. Seshadri, N. Becker, Multicarrier successive predistortion for nonlinear satellite systems. IEEE Trans. Commun. 63(4), 1373–1382 (2015)

    Article  Google Scholar 

  63. S. Cioni et al., Transmission parameters optimization and receiver architectures for DVB-S2X systems. Int. J. Satell. Commun. Netw. 34(3), 337–350 (2016)

    Article  Google Scholar 

  64. A. Ugolini, A. Modenini, G. Colavolpe, G. Picchi, V. Mignone, A. Morello, Advanced techniques for spectrally efficient DVB-S2X systems, in Proceedings 7th Advanced Satellite Multimedia Systems Conference, 13th Signal Processing Space Communications Workshop (2014), pp. 158–164

    Google Scholar 

  65. H. Skinnemoen, Gateway diversity in Ka-band systems, in 4th Ka-Band Utilization Conference (1998)

    Google Scholar 

  66. I. del Portillo, B. Cameron, E. Crawley, Ground segment architectures for large LEO constellations with feeder links in EHF-bands, in 2018 IEEE Aerospace Conference (2018)

    Google Scholar 

  67. B.G. Evans, P. Thompson, C. Baudoin, M. Dervin, Gateway diversity for a future high throughput satellite system, in 32nd AIAA International Communications Satellite Systems Conference, AIAA SPACE Forum (2014)

    Google Scholar 

  68. F. Lacoste, A. Guérin, A. Laurens, G. Azema, C. Periard, D. Grimal, FSO ground network optimization and analysis considering the influence of clouds, in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP) (2011), pp. 2746–2750

    Google Scholar 

  69. S. Poulenard, M. Crosnier, A. Rissons, Ground segment design for broadband geostationary satellite with optical feeder link. IEEE/OSA J. Opt. Commun. Netw. 7(4), 325–336 (2015)

    Article  Google Scholar 

  70. C. Fuchs, F. Moll, Ground station network optimization for space-to-ground optical communication links. IEEE/OSA J. Opt. Commun. Netw. 7(12), 1148–1159 (2015)

    Article  Google Scholar 

  71. I. del Portillo, M. Sanchez, B. Cameron, E. Crawley, Architecting the ground segment of an optical space communication network, in 2016 IEEE Aerospace Conference (2016), pp. 1–13

    Google Scholar 

  72. Y. Cao, L. Zhao, Y. Shi, J. Liu, Gateway placement for reliability optimization in 5G-satellite hybrid networks, in 2018 International Conference on Computing, Networking and Communications (ICNC) (2018), pp. 372–376

    Google Scholar 

  73. R. Dhaou et al., Gateway selection optimization in hybrid MANET-satellite network, in Wireless and Satellite Systems (Springer International Publishing, New York, 2015), pp. 331–344

    Google Scholar 

  74. A. Gharanjik, B. Shankar, P.D. Arapoglou, B. Ottersten, Multiple gateway transmit diversity in Q/V band feeder links. IEEE Trans. Commun. 63(3), 916–926 (2015)

    Article  Google Scholar 

  75. T. Rossi, M. De Sanctis, F. Maggio, M. Ruggieri, C. Hibberd, C. Togni, Smart gateway diversity optimization for EHF satellite networks. IEEE Trans. Aerosp. Electron. Syst. 56(1), 130–141 (2019)

    Article  Google Scholar 

  76. A. Kyrgiazos, B.G. Evans, P. Thompson, On the gateway diversity for high throughput broadband satellite systems. IEEE Trans. Wirel. Commun. 13(10), 5411–5426 (2014)

    Article  Google Scholar 

  77. T. Delamotte, R.T. Schwarz, K. Storek, A. Knopp, MIMO feeder links for high throughput satellites, in WSA 2018; 22nd International ITG Workshop on Smart Antennas (2018), pp. 1–8

    Google Scholar 

  78. T. Delamotte, K. Storek, A. Knopp, MIMO processing for satellites in the 5G era, in 2019 IEEE 2nd 5G World Forum (5GWF) (2019), pp. 629–635. https://doi.org/10.1109/5GWF.2019.8911646

  79. R.T. Schwarz, T. Delamotte, K. Storek, A. Knopp, MIMO applications for multibeam satellites. IEEE Trans. Broadcast. 65(4), 664–681 (2019). https://doi.org/10.1109/TBC.2019.2898150

    Article  Google Scholar 

  80. A. Guidotti, C. Sacchi, A. Vanelli-Coralli, Feeder link precoding for future broadcasting services: architecture and performance. IEEE Trans. Aerosp. Electron. Syst. https://doi.org/10.1109/TAES.2022.3144243

  81. K.Y. Lau, G.F. Lutes, R.L. Tjoelker, Ultra-stable RF-over-fiber transport in NASA antennas, phased arrays and radars. J. Lightwave Technol. 32(20), 3440–3451 (2014). https://doi.org/10.1109/JLT.2014.2312930

    Article  Google Scholar 

  82. G. Codispoti, G. Parca, M. Ruggieri, T. Rossi, M. De Sanctis, C. Riva, L. Luini, The role of the Italian space agency in investigating high frequencies for satellite communications: the alphasat experiment. Int. J. Sat. Commun. Netw. 37(5), 387–396 (2018)

    Article  Google Scholar 

  83. T. Rossi, M. De Sanctis, F. Maggio, M. Ruggieri, G. Codispoti, G. Parca, Q/V-band satellite communication experiments on channel estimation with Alphasat Aldo Paraboni P/L, in 2015 IEEE Aerospace Conference (2015), pp. 1–11

    Google Scholar 

  84. T. Rossi et al., Satellite communication and propagation experiments through the alphasat Q/V band Aldo Paraboni technology demonstration payload. IEEE Trans. Aerosp. Electron. Syst. 31(3), 18–27 (2016)

    Article  Google Scholar 

  85. R. Polonio, C. Riva, ITALSAT propagation experiment at 18.7, 39.6 and 49.5 GHz at Spino D’Adda: three years of CPA statistics. IEEE Trans. Antennas Propag. 46(5), 631–635 (1998)

    Google Scholar 

  86. J.A. Haulund, R. Khullar, Advanced extremely high frequency mission planning: will its legacy dictate its future? in 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL) (2012), pp. 1–5

    Google Scholar 

  87. M. Sarchet, AEHF Update, Presentation to AFCEA Los Angeles Chapter, Los Angeles (CA) [Online]. Accessed 22 Mar. 2012. Available: https://afcea-la.org/

  88. M. Ruggieri, S. De Fina, M. Pratesi, E. Saggese, C. Bonifazi, The W-band data collection experiment of the DAVID mission. IEEE Trans. Aerosp. Electron. Syst. 38(4), 1377–1387 (2002)

    Article  Google Scholar 

  89. M. Lucente et al., Experimental missions in W-Band: a small LEO satellite approach. IEEE Syst. J. 2(1), 90–103 (2008)

    Article  Google Scholar 

  90. A. Jebril et al., The WAVE mission payload, in 2005 IEEE Aerospace Conference (2005), pp. 903–912

    Google Scholar 

  91. FCC FACT SHEET, SpaceX V-band authorization memorandum opinion, order and authorization–IBFS. File No. SAT-LOA-20170301-00027 [Online]. Available: https://docs.fcc.gov/public/attachments/DOC-354775A1.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernestina Cianca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cianca, E., Ruggieri, M., Guidotti, A., Rossi, T., Parca, G. (2023). Millimeter Waves and High-Throughput Satellites: The New Frontier Toward Terabit Connectivity in the Sky. In: Sacchi, C., Granelli, F., Bassoli, R., Fitzek, F.H.P., Ruggieri, M. (eds) A Roadmap to Future Space Connectivity. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-30762-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30762-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30761-4

  • Online ISBN: 978-3-031-30762-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics