Skip to main content

Ground and Space Hardware for Interplanetary Communication Networks

  • Chapter
  • First Online:
A Roadmap to Future Space Connectivity

Abstract

The increasing demand for interplanetary communication links, due to the growing number of space missions planned or being executed as part of the Lunar and Martian future colonization, but also the science-driven exploration of the outer solar system, drives the optimization of ground and space hardware, and the creation of new paradigms for deep space communication. This chapter deals with a review of the existing technologies and development trends for the communication equipment on the ground and onboard the spacecraft. It also introduces different potentially promising architectures which may overcome the bottleneck due to the conflicting requirements represented on the one side by the advantage of having higher frequencies to increase the data throughput, and on the other side by the greater attenuation due to the Earth’s atmosphere at higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.A. Imbriale, Large antennas of the deep space network, in Large Antennas of the Deep Space Network (2003)

    Google Scholar 

  2. J.H. Yuen, Deep Space Telecommunications Systems Engineering (Springer Science & Business Media, New York, 2013)

    Google Scholar 

  3. D. Buccino, J.S. Border, W.M. Folkner, D. Kahan, S. Le Maistre, Low-snr doppler data processing for the insight radio science experiment. Remote Sens. 14(8), 1–9 (2022)

    Article  Google Scholar 

  4. A. Togni, M. Zannoni, L.G. Casajus, P.Tortora, An fft-based method for doppler observables estimation in deep space tracking, in 2021 IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2021 - Proceedings, vol. 5 (2021), pp. 294–299

    Google Scholar 

  5. Z.L. Mou, Y.Q. Tu, P. Chen, K. Wang, Accurate frequency estimation of multiple complex and real sinusoids based on iterative interpolation. Digital Signal Process. A Rev. J. 117, 103173 (2021)

    Article  Google Scholar 

  6. H. Lehpamer, Microwave Transmission Networks: Planning, Design, and Deployment. (McGraw-Hill Education, New York, 2010)

    Google Scholar 

  7. G. Valente, M.N. Iacolina, R. Ghiani, A. Saba, G. Serra, E.Urru, G. Montisci, S. Mulas, S.W. Asmar, T.T. Pham, J. De Vicente, S. Viviano, The sardinia space communication asset: performance of the sardinia deep space antenna x-band downlink capability. IEEE Access 10, 64525–64534 (2022)

    Article  Google Scholar 

  8. S.D. Slobin, T. Pham, 34-m bwg stations telecommunications interfaces, in DSN Telecommunications Link Design Handbook (2010), pp. 810–005

    Google Scholar 

  9. S.D. Slobin, T. Phan, 34-m hef subnet telecommunications interfaces. DSN Telecommunications Link Design Handbook (2008), pp. 810–005

    Google Scholar 

  10. T. Pham, J. Liao, E.J. Wyatt, B. Malphrus, J. Kruth, R. Kroll, M. Combs, T. Gedenk, S. Wilczewski, J. Lewis, A. Roberts, E. Mattle, C. Hart, System development and spacecraft testing of the Morehead state university ground station (2019). Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space

    Google Scholar 

  11. M. Calhoun, S. Huang, R.L. Tjoelker, Stable photonic links for frequency and time transfer in the deep-space network and antenna arrays. Proc. IEEE 95(10), 1931–1946 (2007)

    Article  Google Scholar 

  12. D. Buccino, M. Soriano, K. Oudrhiri, S. Finley, D. Kahan, O. Yang, A. Jongeling, Detecting juno’s ’heartbeat’: communications support during critical events of the juno mission. IEEE Aerospace Conference Proceedings, vol 818 (2020)

    Google Scholar 

  13. C.L. Thornton, J.S. Border, Radiometric tracking techniques for deep space navigation. Radiometric Tracking Techniques for Deep Space Navigation (2005)

    Google Scholar 

  14. A. Modenini, B. Ripani, S. Member, For space missions a tutorial on the tracking , telemetry , and command ( tt&c ) for space missions (2022), pp. 0–30

    Google Scholar 

  15. W. Tai, Dsn frequency transition from l- to ka-band (Jet Propulsion Laboratory, Pasadena) (2023), p. 8. The source is: https://gsaw.org/wp-content/uploads/2019/10/2005s09a_tai.pdf. Retrieved on May 3rd 2023.

  16. D.S. Network, Dsn telecommunications link design handbook, no. 810-005 (JPL, Pasadena, 2000)

    Google Scholar 

  17. R. Martin, M. Warhaut, Esa’s 35-meter deep space antennas at new norcia/western australia and cebreros/spain, in 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), vol. 2 (2004), pp. 1124–1133

    Google Scholar 

  18. P. Tortora, L. Iess, J. Bordi, J. Ekelund, D. Roth, Precise cassini navigation during solar conjunctions through multifrequency plasma calibrations. J. Guidance Control Dyn. 27(2), 251–257 (2004)

    Article  Google Scholar 

  19. M.C. Comparini, F. De Tiberis, R. Novello, V. Piloni, L. Simone, D. Gelfusa, F. Argentieri, D.J. Fiore, F. Barletta, M. Delfino, S. Cocchi, F. Marchetti, A. Delfino, A. Rapposelli, G. Basile, Advances in deep-space transponder technology. Proc. IEEE 95(10), 1994–2008 (2007)

    Article  Google Scholar 

  20. S.W. Asmar, S.J. Bolton, D.R. Buccino, T.P. Cornish, W.M. Folkner, R. Formaro, L. Iess, A.P. Jongeling, D.K. Lewis, A.P. Mittskus, R. Mukai, L. Simone, The juno gravity science instrument. Space Sci. Rev. 213(1–4), 205–218 (2017)

    Article  Google Scholar 

  21. P. Cappuccio, V. Notaro, A. di Ruscio, L. Iess, A. Genova, D. Durante, I. di Stefano, S.W. Asmar, S. Ciarcia, L. Simone, Report on first in flight data of bepicolombo’s mercury orbiter radio science experiment. IEEE Trans. Aerospace Electron. Syst. 56(6), 4984–4988 (2020)

    Article  Google Scholar 

  22. L. Simone, S. Ciarcia, G. De Angelis, F. Argentieri, D. Gelfusa, O. Cocciolillo, Ka-band transponders for radioscience: Product family evolution and in-flight operations, in TTC 2016 - 7th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications, (2016)

    Google Scholar 

  23. L. Simone, O. Cocciolillo, D. Gelfusa, M. Belardinelli, M.G. Campagna, Novel x-band transponder for Euclid mission, in TTC 2016 - 7th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications, (2016)

    Google Scholar 

  24. L. Iess, M. Di Benedetto, N. James, M. Mercolino, L. Simone, P. Tortora, Astra: interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques. Acta Astronautica 94(2), 699–707 (2014)

    Article  Google Scholar 

  25. E.C. Posner, L.L. Rauch, B.D. Madsen, Voyager mission telecommunication firsts. IEEE Commun. Mag. 28(9), 22–27 (1990)

    Article  Google Scholar 

  26. C. Paoloni, D. Gamzina, R. Letizia, Y. Zheng, N.C. Luhmann, Millimeter wave traveling wave tubes for the 21st century. J. Electromag. Waves Appl. 35(5), 567–603 (2021)

    Article  Google Scholar 

  27. J.D. Wilson, E.G. Wintucky, K.R. Vaden, D.A. Force, I.L. Krainsky, R.N. Simons, N.R. Robbins, W.L. Menninger, D.R. Dibb, D.E. Lewis, Advances in space traveling-wave tubes for NASA missions. Proc. IEEE 95(10), 1958–1967 (2007)

    Article  Google Scholar 

  28. R. Strauss, J. Bretting, R. Metivier, Traveling wave tubes for communication satellites. Proc. IEEE 65(3), 387–400 (1977)

    Article  Google Scholar 

  29. A.N. Curren et al., The Cassini mission Ka-band TWT, in Proceedings of 1994 IEEE International Electron Devices Meeting, (1994), pp. 783–786. https://doi.org/10.1109/IEDM.1994.383307

  30. W. Harvey, J. Shell, L.L. Burke, The flight operations history of the cassini x-band twtas, in 2018 IEEE International Vacuum Electronics Conference, IVEC 2018 (2018), pp. 11–12

    Google Scholar 

  31. M. Daniel Johnston, D. Martin, R.W. Zurek, W. Richard, The Mars reconnaissance orbiter mission: 2018 status, in Proceedings of the International Astronautical Congress, IAC, vol. 2018 (2018)

    Google Scholar 

  32. J.M. Weekley, B.J. Mangus, Twta versus sspa: a comparison of on-orbit reliability data, in 5Th IEEE International Vacuum Electronics Conference, IVEC 2004, vol. 52, no. 5 (2004), p. 263

    Google Scholar 

  33. V. Camarchia, R. Quaglia, A. Piacibello, D.P. Nguyen, H. Wang, A.V. Pham, A review of technologies and design techniques of millimeter-wave power amplifiers. IEEE Trans. Microwave Theory Tech. 68(7), 2957–2983 (2020)

    Article  Google Scholar 

  34. M.M. Kobayashi, S. Holmes, A. Yarlagadda, F. Aguirre, M. Chase, K. Angkasa, B. Burgett, L. McNally, T. Dobreva, E. Satorius, The iris deep-space transponder for the sls em-1 secondary payloads. IEEE Aerosp. Electron. Syst. Mag. 34(9), 34–44 (2019)

    Article  Google Scholar 

  35. W. Boger, D. Burgess, R. Honda, C. Nuckolls, X-band, 17 watt, solid-state power amplifier for space applications, in IEEE MTT-S International Microwave Symposium Digest, 2005 (2005), pp. 1379–1382

    Google Scholar 

  36. Y. Kobayashi, A. Tomiki, S. Kawasaki, Annual deep-space flight operation verification of x-band gan sspa. IEEE Trans. Aerosp. Electron. Syst. Mag.55(2), 930–938 (2018)

    Article  Google Scholar 

  37. M.M. Kobayashi, State-of-the-Art Status for Deep-Space Smallsat Telecom 2018 Int’l Planetary Probe Workshop Short Course on Small Satellites Boulder (2018)

    Google Scholar 

  38. W.A. Imbriale, L. Boccia, Space antenna handbook. (2012). https://doi.org/10.1002/9781119945147

  39. J.D. Vacchione, R.C. Kruid, A. Prata, L.R. Amaro, A.P. Mittskus, Telecommunications antennas for the juno mission to jupiter, in IEEE Aerospace Conference Proceedings (2012)

    Google Scholar 

  40. C.D. Edwards, T.C. Jedrey, E. Schwartzbaum, A.S. Devereaux, R. De Paula, M. Dapore, T.W. Fischer, The electra proximity link payload for mars relay telecommunications and navigation, in 54th International Astronautical Congress of the International Astronautical Federation (IAF), the International Academy of Astronautics and the International Institute of Space Law, vol.2 (2003), pp. 3505–3515

    Google Scholar 

  41. M.D. Johnston, J.E. Graf, R.W. Zurek, H.J. Eisen, B. Jai, The mars reconnaissance orbiter mission, in 2005 IEEE Aerospace Conference (2005), pp. 447–464

    Google Scholar 

  42. R.E. Hodges, N.E. Chahat, D.J. Hoppe, J.D. Vacchione, The mars cube one deployable high gain antenna, in 2016 IEEE Antennas and Propagation Society International Symposium, APSURSI 2016 - Proceedings (2016), pp. 1533–1534

    Google Scholar 

  43. E. Dotto, V. DellaCorte, M. Amoroso, I. Bertini, J. Brucato, A. Capannolo, B. Cotugno, G. Cremonese, V. DiTana, I. Gai et al., Liciacube-the light italian cubesat for imaging of asteroids in support of the nasa dart mission towards asteroid (65803) didymos. Planetary Space Sci. 199, 105185 (2021)

    Article  Google Scholar 

  44. S.D. Slobin, T. Pham, Atmospheric and environmental effects, in DSN Telecommunications Link Design Handbook, DSN No. 810-005, Space Link Interfaces, Module 105, Rev. E (Jet Propulsion Laboratory, Pasadena, 2015)

    Google Scholar 

  45. D. Modenini, A. Locarini, L. Valentini, A. Faedi, P. Tortora, D. Rovelli, N. Mazzali, M. Chiani, E. Paolini, Two-leg deep-space relay architectures: Performance, challenges, and perspectives. IEEE Trans. Aerosp. Electron. Syst. 58(5), 3840–3858 (2022)

    Article  Google Scholar 

  46. C. Sacchi, C. Schlegel, T. Rossi, M. Noble, M. Ruggieri, K.M. Cheung, M. Marchese, F. Granelli, V. Popescu, M. Rice, M. Murroni, N. Conci, Glue technologies for space systems: an introduction to a new aess technical panel. IEEE Aerosp. Electron. Syst. Mag. 35(1), 46–54 (2020)

    Article  Google Scholar 

  47. U. di Bologna interdepartmental center for industrial researchin aerospace. Tesla two leg deep space relay – system requirements, architecture and performance. Technical Report, ESA Contract n 4000132053/20/NL/FE (2021)

    Google Scholar 

  48. R.A. Stampfl, A.E. Jones, Tracking and data relay satellites. IEEE Trans. Aerosp. Electron. Syst. 6(3), 276–289 (1970)

    Article  Google Scholar 

  49. B. Kopp, J. Harris, C. Lauand, Utilizing existing commercial geostationary earth orbit fixed satellite services for low earth orbit satellite communication relays with earth. New Space 7(1), 19–30 (2019)

    Article  Google Scholar 

  50. K. Hogie, E. Criscuolo, A. Dissanayake, B. Flanders, H. Safavi, J. Lubelczyk, Tdrss demand access system augmentation, in IEEE Aerospace Conference Proceedings, vol. 2015 (2015)

    Google Scholar 

  51. O. Laux, D. Poncet, R. Mager, K. Schoenherr, Status of the European data relay satellite system, in 2012 International Conference on Space Optical Systems and Applications (ICSOS), (2012), pp. 9–12

    Google Scholar 

  52. Y. Satoh, Y. Miyamoto, Y. Takano, S. Yamakawa, H. Kohata, Current status of japanese optical data relay system (jdrs), in 2017 IEEE International Conference on Space Optical Systems and Applications, ICSOS 2017 (2018), pp. 240–242

    Google Scholar 

  53. D.J. Israel, H. Shaw, Next-generation nasa earth-orbiting relay satellites: fusing optical and microwave communications, in IEEE Aerospace Conference Proceedings, vol. 2018 (2018), pp. 1–7

    Google Scholar 

  54. D.M. Boroson, B.S. Robinson, D.A. Burianek, D.V. Murphy, A. Biswas, Overview and status of the lunar laser communications demonstration, in Free-Space Laser Communication Technologies XXIV, vol. 8246 (2012), p. 82460C

    Google Scholar 

  55. H. Hauschildt, S. Mezzasoma, H.L. Moeller, M. Witting, J. Herrmann, European data relay system goes global, in 2017 IEEE International Conference on Space Optical Systems and Applications, ICSOS 2017 (2018), pp. 15–18

    Google Scholar 

  56. H. Hauschildt, C. Elia, H.L. Moeller, W. El-Dali, T. Navarro, M. Guta, S. Mezzasoma, J. Perdigues, Hydron: high throughput optical network, in 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS) (2019), pp. 1–6

    Google Scholar 

  57. B.L. Edwards, D. Israel, K. Wilson, J.D. Moores, A.S. Fletcher, International Conference on Space Optical Systems the Laser Communications Relay Demonstration, vol.12 (2012), pp. 1–9

    Google Scholar 

  58. K.E. Wilson, M. Wright, R. Cesarone, J. Ceniceros, K. Shea, Cost and performance comparison of an earth- orbiting optical communication relay transceiver and a ground-based optical receiver subnet, (2003)

    Google Scholar 

  59. J.Hunter, The orbiting deep space relay station-a study report, in Conference on Large Space Platforms: Future Needs and Capabilities (1978), p. 1639

    Google Scholar 

  60. H. Hemmati, Deep Space Optical Communications (John Wiley & Sons, New York, 2006)

    Book  Google Scholar 

  61. M. Wittig, Data relay for earth, moon and Mars missions, in 2009 International Workshop on Satellite and Space Communications (2009), pp. 300–304

    Google Scholar 

  62. H. Hemmati, A. Biswas, I.B. Djordjevic, Deep-space optical communications: Future perspectives and applications. Proc. IEEE 99(11), 2020–2039 (2011)

    Article  Google Scholar 

  63. R. Cesarone, D. Abraham, S. Shambayati, J. Rush, Deep-space optical communications, in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 410–423

    Google Scholar 

  64. D.M. Cornwell, Nasa’s optical communications program for 2017 and beyond, in 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS) (2017), pp. 10–14

    Google Scholar 

  65. W.J. Hurd, B.E. MacNeal, G.G. Ortiz, R. Moe, J.Z. Walker, M. Dennis, E. Cheng, D. Fairbrother, B. Eegholm, K.J. Kasunic, Exo-atmospheric telescopes for deep space optical communications, in 2006 IEEE Aerospace Conference (2006), p. 12.

    Google Scholar 

  66. E. Gramigna, J.G. Johansen, R.L. Manghi, J. Magalhães, M. Zannoni, P. Tortora, E. Le Bras, A. Togni, Hera inter-satellite link doppler characterization for didymos gravity science experiments, in 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (2022), pp. 430–435

    Google Scholar 

  67. J.C. Breidenthal, The merits of multi-hop communication in deep space, in IEEE Aerospace Conference Proceedings, vol.1 (2000), pp. 211–221

    Google Scholar 

  68. M.O. Hasna, M.-S. Alouini, End-to-end outage probability of multihop transmission over lognormal shadowed channels (2003). Citeseer

    Google Scholar 

  69. L.P. Clare, J.L. Gao, E.H. Jennings, C. Okino, Space-based multi-hop networking. Comput. Netw. 47(5), 701–724 (2005)

    Article  Google Scholar 

  70. L. Valentini, A. Faedi, E. Paolini, M. Chiani, Analysis of pointing loss effects in deep space optical links, in 2021 IEEE Global Communications Conference (GLOBECOM) (2021), pp. 1–6

    Google Scholar 

  71. C.D. Brown, Elements of Spacecraft Design (AIAA, Reston, 2002)

    Book  Google Scholar 

  72. K. Bhasin, J. Warner, S. Oleson, J. Schier, Design concepts for a small space-based geo relay satellite for missions between low earth and near earth orbits, in 13th International Conference on Space Operations, SpaceOps 2014 (2014), pp. 1–19

    Google Scholar 

  73. G. Codispoti, C. Cornacchini, S. Falzini, The Alphasat TDP # 5 Experiment and Challenges for Future Q / V-band Systems Exploitation. Technical challenges for the Q / V- band exploitation : The Alphasat TDP # 5 communications and propagation experiments : Description and rationale (2011)

    Google Scholar 

  74. E. Cianca, T. Rossi, A. Yahalom, Y. Pinhasi, J. Farserotu, C. Sacchi, Ehf for satellite communications: the new broadband frontier. Proc. IEEE 99(11), 1858–1881 (2011)

    Article  Google Scholar 

  75. N. Deo, High power transmitters for q/v-band communications-beyond alphasat, in 2019 IEEE Aerospace Conference (2019), pp. 1–6

    Google Scholar 

  76. C.K. Chong, D.A. Layman, W.L. McGeary, W.L. Menninger, M.L. Ramay, X.Zhai, L3 technologies edd q/v-band helix twt for future high-data-rate communications uplink applications, in IVEC 2017 - 18th International Vacuum Electronics Conference, vol. 2018, no. 6 (2018), pp. 1–2

    Google Scholar 

  77. N. Deo, High performance transmitters for small satellites for data transmission and remote sensing, in IEEE Aerospace Conference Proceedings, vol. 2019 (2019), pp. 1–6

    Google Scholar 

  78. N.C. Deo, Solid-state transmitters and sources for remote sensing radars, instruments and communication, in Asia-Pacific Microwave Conference Proceedings, APMC, vol. 2018 (2019), pp. 977–979

    Google Scholar 

  79. A. Biswas, H. Hemmati, S. Piazzolla, B. Moision, K. Birnbaum, K. Quirk, Deep-space optical terminals (dot) systems engineering. IPN Progress Rep. 42, 183 (2010)

    Google Scholar 

  80. H. Hemmati, M.W. Wright, A. Biswas, C. Esproles, High-efficiency pulsed laser transmitters for deep-space communication. Free-Space Laser Communication Technologies XII, vol. 3932 (2000), pp. 188–195

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Italian Space Agency (ASI) for their continuos support which helped developing significant expertise in radio tracking and radio science techniques, spanning from the data analysis domain to the communication systems analysis and design, including hardware and software components. PT, DM, EP and LV aknowledge support from the European Space Research and Technology Centre (ESA/ESTEC), under Grant 4000132053/20/NL/FE, for their work on two-legs deep space communication systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Tortora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tortora, P. et al. (2023). Ground and Space Hardware for Interplanetary Communication Networks. In: Sacchi, C., Granelli, F., Bassoli, R., Fitzek, F.H.P., Ruggieri, M. (eds) A Roadmap to Future Space Connectivity. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-30762-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30762-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30761-4

  • Online ISBN: 978-3-031-30762-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics