Skip to main content

Development of a Hardware in the Loop Ad-Hoc Testbed for Cooperative Vehicles Platooning

  • Conference paper
  • First Online:
Intelligent Transport Systems (INTSYS 2022)

Abstract

Cooperative Cyber-Physical Devices (Co-CPS) are reaching into the most diverse areas and pose new integration challenges. For cooperative autonomous machines, safety and reliability must be guaranteed without human presence. Among these, Cooperative Vehicular Platooning (Co-VP) applications offer an exciting promise, as they allow to improve road occupation, reduce accidents, and provide fuel savings. The high complexity and safety-critical characteristics of these applications requires them to be validated, to ensure their reliability before being applied in real scenarios, notably regarding their underlying communication transactions.

This paper presents an architecture for validating a Co-VP system via Hardware-In-the-Loop (HIL) integration of IEEE 802.11 communications and co-simulation support of a 3D simulator. We present it in a scenario of communication according to the ETSI ITS model and information exchange frequencies between the vehicles. Through these scenarios that mimic realistic conditions of Co-VP applications, we observe the impact of such variations on the number of messages received, network delay, and lateral and longitudinal platoon errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, X., Huang, Z., Chen, S.: Vehicular communication channel measurement, modelling, and application for beyond 5G and 6G. IET Commun. 14, 3303–3311 (2020)

    Article  Google Scholar 

  2. Rahim, A., Malik, P.K., Sankar Ponnapalli, V.A.: State of the art: a review on vehicular communications, impact of 5G, fractal antennas for future communication. In: Singh, P.K., Pawłowski, W., Tanwar, S., Kumar, N., Rodrigues, J.J.P.C., Obaidat, M.S. (eds.) Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019). LNNS, vol. 121, pp. 3–15. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3369-3_1

    Chapter  Google Scholar 

  3. Pivoto, D.G., de Almeida, L.F., da Rosa Righi, R., Rodrigues, J.J., Lugli, A.B., Alberti, A.M.: Cyber-physical systems architectures for industrial internet of things applications in industry 4.0: a literature review. J. Manuf. Syst. 58, 176–192 (2021)

    Article  Google Scholar 

  4. Mazumder, S.K., et al.: A review of current research trends in power-electronic innovations in cyber-physical systems. IEEE J. Emerg. Sel. Top. Power Electron. 9, 5146–5163 (2021)

    Article  Google Scholar 

  5. Kong, X.T., Kang, K., Zhong, R.Y., Luo, H., Xu, S.X.: Cyber physical system-enabled on-demand logistics trading. Int. J. Prod. Econ. 233, 108005 (2021)

    Article  Google Scholar 

  6. Son, Y.H., Park, K.T., Lee, D., Jeon, S.W., Do Noh, S.: Digital twin-based cyber-physical system for automotive body production lines. Int. J. Adv. Manuf. Technol. 115, 291–310 (2021)

    Article  Google Scholar 

  7. Balador, A., Bazzi, A., Hernandez-Jayo, U., de la Iglesia, I., Ahmadvand, H.: A survey on vehicular communication for cooperative truck platooning application. Veh. Commun. 35, 100460 (2022)

    Google Scholar 

  8. Earnhardt, C., Groelke, B., Borek, J., Pelletier, E., Brennan, S., Vermillion, C.: Cooperative exchange-based platooning using predicted fuel-optimal operation of heavy-duty vehicles. IEEE Trans. Intell. Transp. Syst. 23, 17312–17324 (2022)

    Article  Google Scholar 

  9. Li, K., Wang, J., Zheng, Y.: Cooperative formation of autonomous vehicles in mixed traffic flow: beyond platooning. IEEE Trans. Intell. Transp. Syst. 23, 15951–15966 (2022)

    Article  Google Scholar 

  10. Vasconcelos Filho, E., Severino, R., Koubaa, A., Tovar, E.: A real time QoS monitor architecture proposal for cooperative vehicular platooning. In: Book of Abstracts of the Symposium on Transport Systems and Mobility, (Porto, Portugal), p. 4. FEUP (2021)

    Google Scholar 

  11. Xiao, S., Ge, X., Han, Q.L., Zhang, Y.: Secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks under denial-of-service attacks. IEEE Trans. Cybern. 52, 1–13 (2021)

    Google Scholar 

  12. Knight, J.: Safety critical systems: challenges and directions. In: Proceedings of the 24th International Conference on Software Engineering. ICSE 2002, pp. 547–550 (2002)

    Google Scholar 

  13. Wolschke, C., Sangchoolie, B., Simon, J., Marksteiner, S., Braun, T., Hamazaryan, H.: SaSeVAL: a safety/security-aware approach for validation of safety-critical systems. In: 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), (Taipei, Taiwan), pp. 27–34. IEEE (2021)

    Google Scholar 

  14. Filho, E.V., Severino, R., Rodrigues, J., Gonçalves, B., Koubaa, A., Tovar, E.: CopaDrive: an integrated ROS cooperative driving test and validation framework. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 962, pp. 121–174. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75472-3_4

    Chapter  Google Scholar 

  15. Drechsler, M.F., Sharma, V., Reway, F., Schütz, C., Huber, W.: Dynamic vehicle-in-the-loop: a novel method for testing automated driving functions. SAE Int. J. Connected Autom. Veh. 5, 12–05-04-0029 (2022)

    Google Scholar 

  16. Shao, Y., Zulkefli, M.A.M., Sun, Z., Huang, P.: Evaluating connected and autonomous vehicles using a hardware-in-the-loop testbed and a living lab. Transp. Res. Part C Emerg. Technol. 102, 121–135 (2019)

    Article  Google Scholar 

  17. Obermaier, C., Riebl, R., Facchi, C.: Fully reactive hardware-in-the-loop simulation for VANET devices. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), (Maui, Hawaii, USA), pp. 3755–3760, IEEE (2018)

    Google Scholar 

  18. European Telecommunications Standards Institute. ETSI EN 302 637–2 V1.4.0 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service, Technical report V1.4.0, ETSI (2018)

    Google Scholar 

  19. Ma, J., Zhou, F., Huang, Z., James, R.: Hardware-in-the-loop testing of connected and automated vehicle applications: a use case for cooperative adaptive cruise control. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), (Maui, Hawaii, USA), pp. 2878–2883. IEEE (2018). ISSN: 2153–0017

    Google Scholar 

  20. Joshi, A.: A novel approach for validating adaptive cruise control (ACC) using two hardware-in-the-loop (HIL) simulation benches. SAE Technical Paper 2019–01-1038, SAE International, Warrendale, PA (2019). ISSN: 0148–7191, 2688–3627

    Google Scholar 

  21. Plöger, D., Krüger, L., Timm-Giel, A.: analysis of communication demands of networked control systems for autonomous platooning. In: 2018 IEEE 19th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), (Chania, Greece), pp. 14–19. IEEE (2018)

    Google Scholar 

  22. Zhu, S., Goswami, D., Li, H.: Evaluation platform of platoon control algorithms in complex communication scenarios. In: 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), (Kuala Lumpur, Malaysia), pp. 1–5. IEEE (2019)

    Google Scholar 

  23. Ma,F.: Distributed control of cooperative vehicular platoon with nonideal communication condition. In: IEEE Transactions on Vehicular Technology, vol. 69, pp. 8207–8220 (2020)

    Google Scholar 

  24. Dahlman, E., Parkvall, S., Skold, J.: 4G: LTE/LTE-Advanced for Mobile Broadband, 2nd edn. Elsevier, Amsterdam (2014)

    Google Scholar 

  25. Zhang, W., Fu, S., Cao, Z., Jiang, Z., Zhang, S., Xu, S.: An SDR-in-the-loop Carla simulator for C-V2X-based autonomous driving. In :IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), (Online), pp. 1270–1271. IEEE (2020)

    Google Scholar 

  26. U.S. Department Of Transportation. How an Automated Car Platoon Works | Volpe National Transportation Systems Center (2017)

    Google Scholar 

  27. Bichiou, Y., Rakha, H., Abdelghaffar, H.M.: A cooperative platooning controller for connected vehicles. In: Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems, (Online Streaming, – Select a Country –), pp. 378–385. SCITEPRESS - Science and Technology Publications (2021)

    Google Scholar 

  28. Li, Z.: System and method for operating a follower vehicle in a vehicle platoon (2018)

    Google Scholar 

  29. Vasconcelos Filho, E., Severino, R., Koubaa, A., Tovar, E.: An integrated lateral and longitudinal look ahead controller for cooperative vehicular platooning. In: Martins, A.L., Ferreira, J.C., Kocian, A., Costa, V. (eds.) INTSYS 2020. LNICST, vol. 364, pp. 142–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71454-3_9

    Chapter  Google Scholar 

  30. Filho, E.V.: Towards a cooperative robotic platooning testbed. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2020, (Ponta Delgada, Portugal), pp. 332–337. IEEE (2020)

    Google Scholar 

  31. Filho, E.V., Santos, P.M., Severino, R., Koubaa, A., Tovar, E.: Improving the performance of cooperative platooning with restricted message trigger thresholds. IEEE Access 10, 45562–45575 (2022)

    Article  Google Scholar 

  32. Sharef, B.T., Alsaqour, R.A., Ismail, M.: Vehicular communication ad hoc routing protocols: a survey. J. Netw. Comput. Appl. 40, 363–396 (2014)

    Article  Google Scholar 

  33. Hussain, R., Lee, J., Zeadally, S.: Trust in VANET: a survey of current solutions and future research opportunities. IEEE Trans. Intell. Transp. Syst. 22, 2553–2571 (2021)

    Article  Google Scholar 

  34. Benkirane, S., Benaziz, M.: Performance evaluation of IEEE 802.11p and IEEE 802.16e for vehicular ad hoc networks using simulation tools. In: 2018 IEEE 5th International Congress on Information Science and Technology (CiSt), pp. 573–577 (2018). ISSN: 2327–1884

    Google Scholar 

  35. Sehla, K., Nguyen, T.M.T., Pujolle, G., Velloso, P.B.: resource allocation modes in C-V2X: from LTE-V2X to 5G–V2X. IEEE Int. Things J. 9, 8291–8314 (2022)

    Article  Google Scholar 

  36. Filippi, A., Moerman, K., Martinez, V., Turley, A., Haran, O., Toledano, R.: IEEE802. 11p ahead of LTE-V2V for safety applications. NXP Autotalks 1(1), 19 (2017)

    Google Scholar 

  37. Festag, A.: Standards for vehicular communication-from IEEE 802.11p to 5G. Elektrotechnik und Informationstechnik 132, 409–416 (2015)

    Article  Google Scholar 

  38. Intel. Benefits of 5G Technology and Advantages of 5G Networks (2021)

    Google Scholar 

  39. Beutnagel, W.: 5G - How the automotive industry benefits from the new mobile communications standard (2020)

    Google Scholar 

  40. Eichler, S.: Performance evaluation of the IEEE 802.11p WAVE communication standard. In: 2007 IEEE 66th Vehicular Technology Conference, (Baltimore, MD, USA), pp. 2199–2203. IEEE (2007)

    Google Scholar 

  41. European Telecommunications Standards Institute. ETSI TR 102 638 V1.1.1 - Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions, Technical report TR 102 638, European Telecommunications Standards Institute (2009)

    Google Scholar 

  42. JetsonHacks. NVIDIA Jetson TX2 J21 Header Pinout (2020). https://www.jetsonhacks.com/nvidia-jetson-tx2-j21-header-pinout/

  43. Agrawal, A.: Python pickling: what it is and how to use it securely | Synopsys (2014)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); by the FCT and the Portuguese National Innovation Agency (ANI), under the CMU Portugal partnership, through the European Regional Development Fund (ERDF) of the Operational Competitiveness Programme and Internationalization (COMPETE 2020), under the PT2020 Partnership Agreement, within project FLOYD (grant nr. 45912); and by FCT and the EU ECSEL JU under the H2020 Framework Programme, within project ECSEL/0010/2019, JU grant nr. 876019 (ADACORSA). The JU receives support from the European Union’s Horizon 2020 research and innovation program and Germany, Netherlands, Austria, France, Sweden, Cyprus, Greece, Lithuania, Portugal, Italy, Finland, and Turkey. The ECSEL JU and the European Commission are not responsible for the content on this paper or any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enio Vasconcelos Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasconcelos Filho, E., Mendes, B., Santos, P.M., Severino, R., Tovar, E. (2023). Development of a Hardware in the Loop Ad-Hoc Testbed for Cooperative Vehicles Platooning. In: Martins, A.L., Ferreira, J.C., Kocian, A., Tokkozhina, U. (eds) Intelligent Transport Systems. INTSYS 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-30855-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30855-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30854-3

  • Online ISBN: 978-3-031-30855-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics