Skip to main content

Optimal Control Based Trajectory Planning Under Uncertainty

  • Conference paper
  • First Online:
Intelligent Transport Systems (INTSYS 2022)

Abstract

In this paper, we propose a constrained optimal control approach as a reference trajectory generator for a driving scenario with uncertainty. With a given scenario, this generator can produce a reference trajectory in order to make validations for autonomous vehicle’s decision-making problems. The constrained optimal control problem guarantees obtaining a collision-free trajectory with safety and comfort based on the design of the objective function and the constraints of the vehicle. The uncertainty of environmental information provided by sensors is taken into account, and a stochastic optimization problem is proposed to limit the risk of violating safety requirements. Numerical experiments show that the stochastic model can better ensure the robustness of the obtained solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. LaValle, S.M., Kuffner, J.J., Jr.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Google Scholar 

  2. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Informed RRT: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2997–3004. IEEE (2014)

    Google Scholar 

  3. Perez, A., Platt, R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: LQR-RRT: optimal sampling-based motion planning with automatically derived extension heuristics. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2537–2542. IEEE (2012)

    Google Scholar 

  4. Chen, J.: R2-RRT: reliability-based robust mission planning of off-road autonomous ground vehicle under uncertain terrain environment. IEEE Trans. Autom. Sci. Eng. 19(2), 1030–1046 (2021)

    Google Scholar 

  5. Li, Y., Littlefield, Z., Bekris, K.E.: Sparse methods for efficient asymptotically optimal kinodynamic planning. In: Akin, H.L., Amato, N.M., Isler, V., van der Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR, vol. 107, pp. 263–282. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16595-0_16

    Chapter  Google Scholar 

  6. Likhachev, M., Ferguson, D.I., Gordon, G.J., Stentz, A., Thrun, S.: Anytime dynamic A*: an anytime, replanning algorithm. In: ICAPS, vol. 5, pp. 262–271 (2005)

    Google Scholar 

  7. Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: anytime A* with provable bounds on sub-optimality. In: Advances in Neural Information Processing Systems, vol. 16 (2003)

    Google Scholar 

  8. Strub, M.P., Gammell, J.D.: AIT* and EIT*: asymmetric bidirectional sampling-based path planning. arXiv preprint arXiv:2111.01877 (2021)

  9. Berntorp, K., Olofsson, B., Lundahl, K., Nielsen, L.: Models and methodology for optimal trajectory generation in safety-critical road-vehicle manoeuvres. Veh. Syst. Dyn. 52(10), 1304–1332 (2014)

    Article  Google Scholar 

  10. Bergman, K., Axehill, D.: Combining homotopy methods and numerical optimal control to solve motion planning problems. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 347–354. IEEE (2018)

    Google Scholar 

  11. Prékopa, A.: Stochastic Programming, vol. 324. Springer Science & Business Media (2013)

    Google Scholar 

  12. That, T.N., Casas, J.: An integrated framework combining a traffic simulator and a driving simulator. Procedia Soc. Behav. Sci. 20, 648–655 (2011)

    Article  Google Scholar 

  13. Beal, L., Hill, D., Martin, R., Hedengren, J.: Gekko optimization suite. Processes 6(8), 106 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the French government under the “France 2030” program, as part of the SystemX Technological Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangyuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Hadji, M., Lisser, A. (2023). Optimal Control Based Trajectory Planning Under Uncertainty. In: Martins, A.L., Ferreira, J.C., Kocian, A., Tokkozhina, U. (eds) Intelligent Transport Systems. INTSYS 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-30855-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30855-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30854-3

  • Online ISBN: 978-3-031-30855-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics