Skip to main content

Fully Automated Differential-Linear Attacks Against ARX Ciphers

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2023 (CT-RSA 2023)

Abstract

In this paper, we present a fully automated tool for differential-linear attacks using Mixed-Integer Linear Programming (MILP) and Mixed-Integer Quadratic Constraint Programming (MIQCP) techniques, which is, to the best of our knowledge, the very first attempt to fully automate such attacks. We use this tool to improve the correlations of the best 9 and 10-round differential-linear distinguishers on Speck32/64, and reach 11 rounds for the first time. Furthermore, we improve the latest 14-round key-recovery attack against Speck32/64, using differential-linear distinguishers obtained with our MILP/MIQCP tool. The techniques we present are generic and can be applied to other ARX ciphers as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaraj, N., Caullery, F., Manzano, M.: MILP-aided cryptanalysis of round reduced ChaCha. IACR Cryptology ePrint Archive, p. 1163 (2017). http://eprint.iacr.org/2017/1163

  2. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 525–545. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_27

    Chapter  Google Scholar 

  3. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features of Latin dances: analysis of salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_30

    Chapter  Google Scholar 

  4. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 313–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_11

    Chapter  Google Scholar 

  5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015, pp. 175:1–175:6. ACM (2015). https://doi.org/10.1145/2744769.2747946

  6. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with applications to ARX ciphers. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_12

    Chapter  Google Scholar 

  7. Biham, E., Carmeli, Y.: An improvement of linear cryptanalysis with addition operations with applications to FEAL-8X. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 59–76. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_4

    Chapter  Google Scholar 

  8. Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_16

    Chapter  Google Scholar 

  9. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1

    Chapter  Google Scholar 

  10. Biryukov, A., dos Santos, L.C., Teh, J.S., Udovenko, A., Velichkov, V.: Meet-in-the-filter and dynamic counting with applications to speck. IACR Cryptology ePrint Archive, p. 673 (2022). https://eprint.iacr.org/2022/673

  11. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_12

    Chapter  MATH  Google Scholar 

  12. Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best trails in ARX: application to block cipher Speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 289–310. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_15

    Chapter  Google Scholar 

  13. Boura, C., Coggia, D.: Efficient MILP modelings for Sboxes and linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020). https://doi.org/10.13154/tosc.v2020.i3.327-361

  14. Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for reduced round Salsa and ChaCha. IACR Trans. Symmetric Cryptol. 2016(2), 261–287 (2016). https://doi.org/10.13154/tosc.v2016.i2.261-287

  15. Coutinho, M., Neto, T.C.S.: Improved linear approximations to ARX ciphers and attacks against ChaCha. IACR Cryptology ePrint Archive, p. 224 (2021). https://eprint.iacr.org/2021/224

  16. Coutinho, M., de Sousa Júnior, R.T., Borges, F.: Continuous diffusion analysis. IEEE Access 8, 123735–123745 (2020). https://doi.org/10.1109/ACCESS.2020.3005504

    Article  Google Scholar 

  17. Dey, S., Sarkar, S.: Improved analysis for reduced round Salsa and Chacha. Discret. Appl. Math. 227, 58–69 (2017). https://doi.org/10.1016/j.dam.2017.04.034

    Article  MathSciNet  MATH  Google Scholar 

  18. Dey, S., Sarkar, S.: A theoretical investigation on the distinguishers of Salsa and ChaCha. Discret. Appl. Math. 302, 147–162 (2021). https://doi.org/10.1016/j.dam.2021.06.017

    Article  MathSciNet  MATH  Google Scholar 

  19. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_9

    Chapter  Google Scholar 

  20. Dwivedi, A.D., Srivastava, G.: Differential cryptanalysis of round-reduced LEA. IEEE Access 6, 79105–79113 (2018). https://doi.org/10.1109/ACCESS.2018.2881130

    Article  Google Scholar 

  21. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algorithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_14

    Chapter  Google Scholar 

  22. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_3

    Chapter  Google Scholar 

  23. Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_14

    Chapter  Google Scholar 

  24. Li, T., Sun, Y.: Superball: a new approach for MILP modelings of Boolean functions. IACR Trans. Symmetric Cryptol. 2022(3), 341–367 (2022). https://doi.org/10.46586/tosc.v2022.i3.341-367

  25. Lin, M.H., Carlsson, J., Ge, D., Shi, J., Tsai, J.F.: A review of piecewise linearization methods. Math. Probl. Eng. 2013, 1–8 (2013). https://doi.org/10.1155/2013/101376

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Sun, S., Li, C.: Rotational cryptanalysis from a differential-linear perspective. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 741–770. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_26

    Chapter  Google Scholar 

  27. Liu, Z., Li, Y., Jiao, L., Wang, M.: A new method for searching optimal differential and linear trails in ARX ciphers. IEEE Trans. Inf. Theory 67(2), 1054–1068 (2021). https://doi.org/10.1109/TIT.2020.3040543

    Article  MathSciNet  MATH  Google Scholar 

  28. Makarim, R.H., Rohit, R.: Towards tight differential bounds of Ascon: a hybrid usage of SMT and MILP. IACR Trans. Symmetric Cryptol. 2022(3), 303–340 (2022). https://doi.org/10.46586/tosc.v2022.i3.303-340

  29. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  30. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_19

    Chapter  Google Scholar 

  31. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for ARX: application to Salsa20. Cryptology ePrint Archive, Paper 2013/328 (2013). https://eprint.iacr.org/2013/328

  32. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34704-7_5

    Chapter  MATH  Google Scholar 

  33. Niu, Z., Sun, S., Liu, Y., Li, C.: Rotational differential-linear distinguishers of ARX ciphers with arbitrary output linear masks. IACR Cryptology ePrint Archive, p. 765 (2022). https://eprint.iacr.org/2022/765

  34. Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers with application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 379–394. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_24

    Chapter  Google Scholar 

  35. Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers with application to SPECK and LEA. IACR Cryptology ePrint Archive, p. 209 (2016). https://eprint.iacr.org/2016/209

  36. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9

    Chapter  Google Scholar 

  37. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12

    Chapter  Google Scholar 

  38. Wang, F., Wang, G.: Improved differential-linear attack with application to round-reduced Speck32/64. In: Ateniese, G., Venturi, D. (eds.) ACNS 2022. LNCS, vol. 13269, pp. 792–808. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09234-3_39

    Chapter  Google Scholar 

  39. Yao, Y., Zhang, B., Wu, W.: Automatic search for linear trails of the SPECK family. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 158–176. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Grados .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellini, E., Gerault, D., Grados, J., Makarim, R.H., Peyrin, T. (2023). Fully Automated Differential-Linear Attacks Against ARX Ciphers. In: Rosulek, M. (eds) Topics in Cryptology – CT-RSA 2023. CT-RSA 2023. Lecture Notes in Computer Science, vol 13871. Springer, Cham. https://doi.org/10.1007/978-3-031-30872-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30872-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30871-0

  • Online ISBN: 978-3-031-30872-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics