Skip to main content

Open Source Software Supply Chain Recommendation Based on Heterogeneous Information Network

  • Conference paper
  • First Online:
Benchmarking, Measuring, and Optimizing (Bench 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13852))

Included in the following conference series:

  • 473 Accesses

Abstract

In the GitHub open-source collaborative development scenario, each entity type and the link relationship between them have natural heterogeneous attributes. In order to improve the accuracy of project recommendation, it is necessary to effectively integrate this multi-source information. Therefore, for the project recommendation scenario, this paper defines an open source weighted heterogeneous information network to represent the different entity types and link relationships in the GitHub open source collaborative development scenario, and effectively model the complex interaction among developers, projects and other entities. Using the weighted heterogeneous information network embedding method, extract and use the rich structural and semantic information in the weighted heterogeneous open source information network to learn the node representation of developers and projects, and fuse the personalized nonlinear fusion function into the matrix decomposition model for open source project recommendation. Finally, this paper makes a large number of comparative experiments based on the real GitHub open data set, and compares it with other project recommendation methods to verify the effectiveness of our proposed open source project recommendation model. At the same time, it also explores the impact of different metapaths on the effect of project recommendation. The experimental results show that the recommendation method based on heterogeneous information network can effectively improve the recommendation quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, H., Li, N., Chen, Q., et al.: Projects and developers recommendation in open source ecosystem. J. Chin. Comput. Syst. 42(11), 2259–2268 (2021)

    Google Scholar 

  2. Gousios, G., Spinellis, D.: GHTorrent: GitHub’s data from a firehose. In: 2012 9th IEEE Working Conference on Mining Software Repositories (MSR), pp. 12–21 (2012)

    Google Scholar 

  3. Ma, Y., Bogart, C., Amreen, S., et al.: World of code: an infrastructure for mining the universe of open source VCS data. In: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), pp. 143–154 (2019)

    Google Scholar 

  4. Goggins, S.P., Germonprez, M., Lumbard, K.: Making open source project health transparent. Computer 54(08), 104–111 (2021)

    Article  Google Scholar 

  5. Peterson, J., Krug, J.: Augur: a decentralized, open-source platform for prediction markets. arXiv preprint arXiv:1501.01042, p. 507 (2015)

  6. Dueñas, S., Cosentino, V., Gonzalez-Barahona, J.M., et al.: GrimoireLab: a toolset for software development analytics. Peer J. Comput. Sci. 7, e601 (2021)

    Article  Google Scholar 

  7. Guendouz, M., Amine, A., Hamou, R.M.: Recommending relevant open source projects on GitHub using a collaborative-filtering technique. Int. J. Open Source Softw. Process. (IJOSSP) 6(1), 1–16 (2015)

    Article  Google Scholar 

  8. Zhang, Y., Lo, D., Kochhar, P.S., et al.: Detecting similar repositories on GitHub. In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 13–23. IEEE (2017)

    Google Scholar 

  9. Xu, W., Sun, X., Hu, J., et al.: REPERSP: recommending personalized software projects on GitHub. In: 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 648–652. IEEE (2017)

    Google Scholar 

  10. He, K., Ma, Y., Zhang, Y., Liu, H.: A data-based personalized mixed recommendation method for GitHub projects. J. Jilin Univ. Sci. Edn. 58(6), 1399–1406 (2020)

    Google Scholar 

  11. Yang, C., Fan, Q., Wang, T., et al.: RepoLike: personal repositories recommendation in social coding communities. In: Proceedings of the 8th Asia-Pacific Symposium on Internetware, pp. 54–62 (2016)

    Google Scholar 

  12. Zhang, P., Xiong, F., Leung, H., et al.: FunkR-pDAE: personalized project recommendation using deep learning. IEEE Trans. Emerg. Top. Comput. 9, 886–900 (2018)

    Article  Google Scholar 

  13. Liu, C., Yang, D., Zhang, X., et al.: Recommending GitHub projects for developer onboarding. IEEE Access 6, 52082–52094 (2018)

    Article  Google Scholar 

  14. Sun, Y., Han, J.: Mining heterogeneous information net-works: a structural analysis approach. ACM SIGKDD Explor. Newsl. 14(2), 20–28 (2013)

    Article  Google Scholar 

  15. Jiang, Z., Liu, H., Fu, B., et al.: Recommendation in heterogeneous information networks based on generalized random walk model and Bayesian personalized ranking. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 288–296 (2018)

    Google Scholar 

  16. Shi, C., Zhou, C., Kong, X., et al.: HeteRecom: a semantic-based recommendation system in heterogeneous networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1552–1555 (2012)

    Google Scholar 

  17. Shi, C., Kong, X., Huang, Y., et al.: HeteSim: a general framework for relevance measure in heterogeneous networks. IEEE Trans. Knowl. Data Eng. 26(10), 2479–2492 (2014)

    Article  Google Scholar 

  18. Shi, C., Zhang, Z., Luo, P., et al.: Semantic path based personalized recommendation on weighted heterogeneous information networks. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 453–462 (2015)

    Google Scholar 

  19. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  20. Tang, J., Qu, M., Wang, M.: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, pp. 1067–1077 (2015)

    Google Scholar 

  21. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

    Google Scholar 

  22. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in vector space [EB/OL]. arXiv preprint arXiv:1301.3781 (2013)

  23. Shi, C., Hu, B., Zhao, W.X., et al.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2019)

    Article  Google Scholar 

  24. Wang, Z., Liu, H., Du, Y., et al.: Unified embedding model over heterogeneous information network for personalized recommendation. In: IJCAI, pp. 3813–3819 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunqi Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, H., Liang, G., Wu, Y., Wu, B., Tian, C., Wang, W. (2023). Open Source Software Supply Chain Recommendation Based on Heterogeneous Information Network. In: Gainaru, A., Zhang, C., Luo, C. (eds) Benchmarking, Measuring, and Optimizing. Bench 2022. Lecture Notes in Computer Science, vol 13852. Springer, Cham. https://doi.org/10.1007/978-3-031-31180-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31180-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31179-6

  • Online ISBN: 978-3-031-31180-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics