Skip to main content

Benchmarking Object Detection Models with Mummy Nuts Datasets

  • Conference paper
  • First Online:
Benchmarking, Measuring, and Optimizing (Bench 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13852))

Included in the following conference series:

Abstract

Agriculture presents challenges in automation, especially so in vision systems. Varying lighting conditions, sporadic diversity, and large amounts of noise create difficulty in detecting target objects. Our Mummy Nuts datasets present these challenges in tiny scale, camouflaged, dark, or even hidden target objects. However, the most recent advancements in Convolutional Neural Networks (CNN) in the object detection task have become increasingly accurate and robust. As there are many different CNNs, selecting which CNN will perform the best may become challenging. This paper proposes a two-dimensional benchmarking methodology to evaluate five popular CNN models (YOLOv3, YOLOv5, CenterNet, Faster R-CNN, and MobileNet SSD) on two NVIDIA GPUs (Tesla T4 and A100). Our benchmarking methodology evaluates accuracy across all models and performance among models on each GPU. Our results show the benefits of selecting models using our Augmented dataset over the Original dataset. CNN Models overall see an increase in recall values during inference by an average of 2.77X (with the highest increase as YOLOv3 by 6.5X). For performance, over both Original and Augmented datasets, the model training time reduces by an average of 4.45X when using A100 over Tesla T4.

This work was supported in part by the NSF research grants CCF #2132049, EEC #1941529, and a COR grant from University of California, Merced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almonds, C.: Navel Orangeworm (2022). https://www.almonds.com/almond-industry/industry-news/mummy-nut-removal-ready-set

  2. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  4. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2009)

    Article  Google Scholar 

  5. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492 (2010)

    Google Scholar 

  6. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 743–761 (2012)

    Article  Google Scholar 

  7. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)

    Google Scholar 

  10. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  11. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  12. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  13. Hui, Y., Lien, J., Lu, X.: Early experience in benchmarking edge AI processors with object detection workloads. In: Gao, W., Zhan, J., Fox, G., Lu, X., Stanzione, D. (eds.) Bench 2019. LNCS, vol. 12093, pp. 32–48. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49556-5_3

    Chapter  Google Scholar 

  14. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678 (2016)

  18. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  19. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  20. Jocher, G., et al.: Ultralytics/YOLOv5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference (2022)

    Google Scholar 

  21. Redmon, J.: Darknet: Open Source Neural Networks in C (2013/2016). http://pjreddie.com/darknet/

  22. Hui, J.: mAP (mean Average Precision) for Object Detection (2022). https://medium.com/p/45c121a31173

  23. NVIDIA. NVIDIA A100 Tensor Core GPU Datasheet (2022). https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

  24. Intel: Intel Xeon Gold 6336Y Processor Datasheet (2022). https://www.intel.com/content/www/us/en/products/sku/215280/intel-xeon-gold-6336y-processor-36m-cache-2-40-ghz/specifications.html

  25. NVIDIA: NVIDIA Tesla T4 Tensor Core GPU Datasheet (2022). https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf

  26. Wang, J., Xu, C., Yang, W., Yu, L.: A normalized Gaussian Wasserstein distance for tiny object detection. arXiv preprint arXiv:2110.13389 (2021)

  27. Lu, Y., Young, S.: A survey of public datasets for computer vision tasks in precision agriculture. Comput. Electron. Agric. 178, 105760 (2020)

    Article  Google Scholar 

  28. Choi, D., Lee, W., Ehsani, R., Schueller, J., Roka, F.: Detection of dropped citrus fruit on the ground and evaluation of decay stages in varying illumination conditions. Comput. Electron. Agric. 127, 109–119 (2016)

    Article  Google Scholar 

  29. Gan, H., Lee, W., Alchanatis, V., Ehsani, R., Schueller, J.: Immature green citrus fruit detection using color and thermal images. Comput. Electron. Agric. 152, 117–125 (2018)

    Article  Google Scholar 

  30. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  31. Qin, R., Liu, Q., Gao, G., Huang, D., Wang, Y.: MRDET: a multi-head network for accurate oriented object detection in aerial images. arXiv preprint arXiv:2012.13135 (2020)

  32. Yi, J., Wu, P., Liu, B., Huang, Q., Qu, H., Metaxas, D.: Oriented object detection in aerial images with box boundary-aware vectors. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2150–2159 (2021)

    Google Scholar 

  33. Zand, M., Etemad, A., Greenspan, M.: Oriented bounding boxes for small and freely rotated objects. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022)

    Article  Google Scholar 

  34. Han, J., Ding, J., Xue, N., Xia, G.-S.: ReDet: a rotation-equivariant detector for aerial object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2786–2795 (2021)

    Google Scholar 

  35. Hui, Y., Lien, J., Lu, X.: Characterizing and accelerating end-to-end EdgeAI inference systems for object detection applications. In: 2021 IEEE/ACM Symposium on Edge Computing (SEC), pp. 01–12 (2021)

    Google Scholar 

  36. Gao, C., Gutierrez, A., Rajan, M., Dreslinski, R.G., Mudge, T., Wu, C.-J.: A study of mobile device utilization. In: 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 225–234 (2015)

    Google Scholar 

  37. Allan, A.: Benchmarking Edge Computing (2022). https://aallan.medium.com/benchmarking-edge-computing-ce3f13942245

  38. Zhang, Q., et al.: A survey on deep learning benchmarks: do we still need new ones? In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 36–49. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ng, D. et al. (2023). Benchmarking Object Detection Models with Mummy Nuts Datasets. In: Gainaru, A., Zhang, C., Luo, C. (eds) Benchmarking, Measuring, and Optimizing. Bench 2022. Lecture Notes in Computer Science, vol 13852. Springer, Cham. https://doi.org/10.1007/978-3-031-31180-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31180-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31179-6

  • Online ISBN: 978-3-031-31180-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics