Skip to main content

Modeling of Ferrite Inductors Power Loss Based on Genetic Programming and Neural Networks

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2022)

Abstract

This work compares two behavioral modeling approaches for predicting AC power loss in Ferrite-Core Power Inductors (FCPIs), normally used in Switch-Mode Power Supply (SMPS) applications. The first modeling approach relies on a genetic programming algorithm and a multi-objective optimization technique. The resulting AC power loss model uses the voltage and switching frequency imposed on the FCPI as input variables, whereas the DC inductor current is used as a parameter expressing the impact of saturation on the magnetic device. A second modeling approach involves a Multi-Layer Perceptron, with a single hidden layer. The resulting AC power loss model uses the voltage, switching frequency and DC inductor current as input variables. As a case study, a 10 \(\upmu \)H FCPI has been selected and characterized by a large set of power loss experimental measurements, which have been adopted to obtain the training and test data. The experimental results confirmed the higher flexibility of the FCPI behavioral modeling based on genetic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milner, L., Rincon-Mora, G.A.: Small saturating inductors for more compact switching power supplies. IEEJ Trans. Electr. Electron. Eng. 7(1), 69–73 (2012)

    Article  Google Scholar 

  2. Di Capua, G., Femia, N.: A novel method to predict the real operation of ferrite inductors with moderate saturation in switching power supply applications. IEEE Trans. Power Electron. 31(3), 2456–2464 (2016)

    Article  Google Scholar 

  3. Di Capua, G., Femia, N., Stoyka, K.: Switching power supplies with ferrite inductors in sustainable saturation operation. Int. J. Electr. Power Energy Syst. 93, 494–505 (2017)

    Article  Google Scholar 

  4. Oliveri, A., Lodi, M., Storace, M.: Nonlinear models of power inductors: a survey. Int. J. Circuit Theory Appl. 50(1), 2–34 (2022)

    Article  Google Scholar 

  5. Lodi, M., Bizzarri, F., Linaro, D., Oliveri, A., Brambilla, A., Storace, M.: A nonlinear behavioral ferrite-core inductance model able to reproduce thermal transients in switch-mode power supplies. IEEE Trans. Circuits Syst. I Regul. Pap. 67(4), 1255–1263 (2020)

    Article  Google Scholar 

  6. Stoyka, K., Di Capua, G., Femia, N.: A novel ac power loss model for ferrite power inductors. IEEE Trans. Power Electron. 34(3), 2680–2692 (2019)

    Article  Google Scholar 

  7. De Falco, I., Tarantino, E., Cioppa, A.D., Fontanella, F.: A novel grammar-based genetic programming approach to clustering. In: Proceedings of the 2005 ACM Symposium on Applied Computing, SAC 2005, pp. 928–932. Association for Computing Machinery New York, NY, USA (2005)

    Google Scholar 

  8. De Falco, I., Tarantino, E., Cioppa, A., Fontanella, F.: An innovative approach to genetic programming-based clustering. In: Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds.) Applied Soft Computing Technologies: The Challenge of Complexity. AINSC, vol. 34, pp. 55–64. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Wens, M., Thone, J.: MADMIX: The standard for measuring SMPS inductors. Bodo’s Power Systems, pp. 52–54 (2015)

    Google Scholar 

  10. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  11. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Article  MathSciNet  Google Scholar 

  12. Kelley, H.J.: Gradient theory of optimal flight paths. Ars J. 30(10), 947–954 (1960)

    Article  MATH  Google Scholar 

  13. Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques", Morgan Kaufmann, Fourth Edition (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fontanella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Capua, G., Molinara, M., Fontanella, F., De Stefano, C., Oliva, N., Femia, N. (2023). Modeling of Ferrite Inductors Power Loss Based on Genetic Programming and Neural Networks. In: De Stefano, C., Fontanella, F., Vanneschi, L. (eds) Artificial Life and Evolutionary Computation. WIVACE 2022. Communications in Computer and Information Science, vol 1780. Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31183-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31182-6

  • Online ISBN: 978-3-031-31183-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics