Skip to main content

Exploring the Solution Space of Cancer Evolution Inference Frameworks for Single-Cell Sequencing Data

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2022)

Abstract

In recent years, many algorithmic strategies have been developed to exploit single-cell mutational profiles generated via sequencing experiments of cancer samples and return reliable models of cancer evolution. Here, we introduce the COB-tree algorithm, which summarizes the solutions explored by state-of-the-art methods for clonal tree inference, to return a unique consensus optimum branching tree. The method proves to be highly effective in detecting pairwise temporal relations between genomic events, as demonstrated by extensive tests on simulated datasets. We also provide a new method to visualize and quantitatively inspect the solution space of the inference methods, via Principal Coordinate Analysis. Finally, the application of our method to a single-cell dataset of patient-derived melanoma xenografts shows significant differences between the COB-tree solution and the maximum likelihood ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguse, N., Qi, Y., El-Kebir, M.: Summarizing the solution space in tumor phylogeny inference by multiple consensus trees. Bioinformatics 35(14), i408–i416 (2019). https://doi.org/10.1093/bioinformatics/btz312

  2. Altrock, P.M., Liu, L.L., Michor, F.: The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15(12), 730–745 (2015)

    Article  Google Scholar 

  3. Angaroni, F., et al.: PMCE: efficient inference of expressive models of cancer evolution with high prognostic power. Bioinformatics 38, 754–762 (2021). https://doi.org/10.1093/bioinformatics/btab717

    Article  Google Scholar 

  4. Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014)

    Article  Google Scholar 

  5. Bouckaert, R., et al.: BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10(4), e1003537 (2014). https://doi.org/10.1371/journal.pcbi.1003537

  6. Caravagna, G., et al.: Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat. Methods 15(9), 707–714 (2018). https://doi.org/10.1038/s41592-018-0108-x

    Article  Google Scholar 

  7. Christensen, S., et al.: Detecting evolutionary patterns of cancers using consensus trees. Bioinformatics 36(Suppl. 2), I684–I691 (2020). https://doi.org/10.1093/bioinformatics/btaa801. pmid: 33381820

  8. Christensen, S., et al.: Detecting evolutionary patterns of cancers using consensus trees. Bioinformatics 36(Suppl. 2), i684–i691 (2020)

    Google Scholar 

  9. Chu, Y.-J.: On the shortest arborescence of a directed graph. Sci. Sinica 14, 1396–1400 (1965)

    MathSciNet  MATH  Google Scholar 

  10. DePristo, M.A., et al.: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43(5), 491 (2011)

    Article  Google Scholar 

  11. Dobin, A., et al.: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21 (2013)

    Article  Google Scholar 

  12. Edmonds, J.: Optimum branchings. J. Res. Natl. Bureau Stand. B 71, 233–240 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Govek, K., Sikes, C., Oesper, L.: A consensus approach to infer tumor evolutionary histories. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB 2018, pp. 63–72. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3233547.3233584. ISBN 978-1-4503-5794-4

  14. Gower, J.C.: Adding a point to vector diagrams in multivariate analysis. Biometrika 55(3), 582–585 (1968). https://doi.org/10.1093/biomet/55.3.582

    Article  MATH  Google Scholar 

  15. Gower, J.C.: Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3–4), 325–338 (1966). https://doi.org/10.1093/biomet/53.3-4.325

    Article  MathSciNet  MATH  Google Scholar 

  16. Jahn, K., Kuipers, J., Beerenwinkel, N.: Tree inference for single-cell data. Genome Biol. 17(1), 86 (2016). https://doi.org/10.1186/s13059-016-0936-x

    Article  Google Scholar 

  17. Kuipers, J., Moffa, G.: Uniform random generation of large acyclic digraphs. Stat. Comput. 25(2), 227–242 (2013). https://doi.org/10.1007/s11222-013-9428-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359 (2012)

    Article  Google Scholar 

  19. O’Reilly, J.E., Donoghue, P.C.J.: The efficacy of consensus tree methods for summarizing phylogenetic relationships from a posterior sample of trees estimated from morphological data. Syst. Biol. 67(2), 354–362 (2018). https://doi.org/10.1093/sysbio/syx086

    Article  Google Scholar 

  20. Patruno, L., et al.: A review of computational strategies for denoising and imputation of single-cell transcriptomic data. Briefings Bioinform. 22(4), bbaa222 (2021). https://doi.org/10.1093/bib/bbaa222

  21. Ramazzotti, D., et al.: CAPRI: efficient inference of cancer progression models from cross-sectional data. Bioinformatics 31(18), 3016–3026 (2015). https://doi.org/10.1093/bioinformatics/btv296

    Article  Google Scholar 

  22. Ramazzotti, D., et al.: LACE: inference of cancer evolution models from longitudinal single-cell sequencing data. J. Comput. Sci. 58, 101523 (2022). https://doi.org/10.1016/j.jocs.2021.101523. https://www.sciencedirect.com/science/article/pii/S1877750321001848

  23. Ramazzotti, D., et al.: Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data. BMC Bioinform. 20(1), 210 (2019). https://doi.org/10.1186/s12859-019-2795-4

    Article  Google Scholar 

  24. Ramazzotti, D., et al.: Variant calling from scRNA-seq data allows the assessment of cellular identity in patient-derived cell lines. Nat. Commun. 13(1), 1–3 (2022)

    Article  Google Scholar 

  25. Ramazzotti, D., et al.: VERSO: a comprehensive framework for the inference of robust phylogenies and the quantification of intra-host genomic diversity of viral samples. Patterns 2(3), 100212 (2021). https://doi.org/10.1016/j.patter.2021.100212

    Article  Google Scholar 

  26. Rambow, F., et al.: Toward minimal residual disease-directed therapy in Melanoma. Cell 174(4), 843–855.e19 (2018). https://doi.org/10.1016/j.cell.2018.06.025

  27. Schwartz, R., Schäffer, A.A.: The evolution of tumour phylogenetics: principles and practice. Nat. Rev. Genet. 18(4), 213–229 (2017). https://doi.org/10.1038/nrg.2016.170

    Article  Google Scholar 

  28. Singer, J., et al.: Bioinformatics for precision oncology. Briefings Bioinform. 20(3), 778–788 (2019)

    Article  Google Scholar 

  29. Tarjan, R.E.: Finding optimum branchings. Networks 7(1), 25–35 (1977). https://doi.org/10.1002/net.3230070103

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by a Bicocca 2020 Starting Grant and Google Cloud Academic Research Grant to DR and FA. Partial support is also granted by the CRUK/AIRC Accelerator Award #22790 “Single-cell Cancer Evolution in the Clinic”. The funders had no role in the design and conduct of the study, analysis, and interpretation of the data, preparation of the manuscript, and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Graudenzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maspero, D., Angaroni, F., Patruno, L., Ramazzotti, D., Posada, D., Graudenzi, A. (2023). Exploring the Solution Space of Cancer Evolution Inference Frameworks for Single-Cell Sequencing Data. In: De Stefano, C., Fontanella, F., Vanneschi, L. (eds) Artificial Life and Evolutionary Computation. WIVACE 2022. Communications in Computer and Information Science, vol 1780. Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31183-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31182-6

  • Online ISBN: 978-3-031-31183-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics