Skip to main content

Unmanned Surface Vehicle Chase a Moving Target Remotely Controlled

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2022)

Abstract

Shortly, it is expected to have hybrid marine scenarios in which manned and unmanned vehicles navigate in the same environment. The study of the interactions between autonomous and human-controlled vessels becomes essential to improve and make the control systems more resilient. For such a reason, this paper shows a simulation architecture to test the effectiveness of a guidance law in a target tracking scenario for surface navigation. The guidance logic is based on the idea of reaching and following a target when the future motion is unknown and only the instantaneous position and speed are available. The adopted guidance law can handle both the chasing and the following phases minimising the time needed to reach the chased vehicles. The actuators’ set-point generation is ensured by speed and heading controls, properly developed for this aim.

A cyber-physical testing scenario has been developed and can run in real-time. Both target and interceptor dynamics are based on detailed mathematical models in which the parameters have been validated by dedicated tank experiments. An operator remotely controls the target through a human-machine interface and tries to leave behind the autonomously controlled interceptor to make the simulation’s results more realistic.

At the end of the paper, the results are reported for investigation and the conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessandri, A., et al.: Dynamic positioning system of a vessel with conventional propulsion configuration: modeling and simulation, pp. 725–734 (2015). https://doi.org/10.1201/b17494-97

  2. Alessandri, A., Donnarumma, S., Martelli, M., Vignolo, S.: Motion control for autonomous navigation in blue and narrow waters using switched controllers. J. Mar. Sci. Eng. 7(6), 196 (2019)

    Article  Google Scholar 

  3. Altosole, M., Campora, U., Donnarumma, S., Zaccone, R.: Simulation techniques for design and control of a waste heat recovery system in marine natural gas propulsion applications. J. Mar. Sci. Eng. 7(11), 397 (2019). https://doi.org/10.3390/jmse7110397

    Article  Google Scholar 

  4. Breivik, M., Hovstein, V., Fossen, T.: Straight-line target tracking for unmanned surface vehicles. MIC—Model. Identif. Control 29(4), 131–149 (2008). https://doi.org/10.4173/mic.2008.4.2

    Article  Google Scholar 

  5. Breivik, M.: Topics in guided motion control of marine vehicles. Ph.D. thesis (2010)

    Google Scholar 

  6. Donnarumma, S., Figari, M., Martelli, M., Zaccone, R.: Simulation of the guidance and control systems for underactuated vessels. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 108–119. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_9

    Chapter  Google Scholar 

  7. Donnarumma, S., Zacearían, L., Alessandri, A., Vignolo, S.: Anti-windup synthesis of heading and speed regulators for ship control with actuator saturation. In: 2016 European Control Conference (ECC), pp. 1284–1290 (2016). https://doi.org/10.1109/ECC.2016.7810466

  8. Draper, C.: Control, navigation, and guidance. IEEE Control Syst. Mag. 1(4), 4–17 (1981)

    Article  Google Scholar 

  9. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, Hoboken (2011)

    Book  Google Scholar 

  10. Fossen, T.I., Breivik, M., Skjetne, R.: Line-of-sight path following of underactuated marine craft. IFAC Proc. Volumes 36(21), 211–216 (2003)

    Article  Google Scholar 

  11. Fruzzetti, C., Donnarumma, S., Martelli, M.: Dynamic target chasing: parameters and performance indicators assessment. J. Mar. Sci. Technol. (Japan) 27(1), 712–729 (2022). https://doi.org/10.1007/s00773-021-00865-3

    Article  Google Scholar 

  12. Haseltala, A., et al.: The collaborative autonomous shipping experiment (case): motivations, theory, infrastructure, and experimental challenges. In: International Ship Control Systems Symposium (iSCSS 2020). IMaReST (2020)

    Google Scholar 

  13. Huang, Y., Chen, L., Chen, P., Negenborn, R.R., Van Gelder, P.: Ship collision avoidance methods: state-of-the-art. Saf. Sci. 121, 451–473 (2020)

    Article  Google Scholar 

  14. IMO: Maritime Safety Committee (MSC), 99th session (16-25 May 2018). https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MSC-99th-session.aspx. Accessed 28 June 2021

  15. IMO: Maritime Safety Committee (MSC), 100th session (3-7 December 2018). https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MSC-100th-session.aspx. Accessed 28 June 2021

  16. IMO: Maritime Safety Committee (MSC), 98th session (7-16 June 2017). https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MSC-98th-session.aspx. Accessed 28 June 2021

  17. Liu, Z., Zhang, Y., Yu, X., Yuan, C.: Unmanned surface vehicles: an overview of developments and challenges. Annu. Rev. Control 41, 71–93 (2016)

    Article  Google Scholar 

  18. Martelli, M., Villa, D., Viviani, M., Donnarumma, S., Figari, M.: The use of computational fluid dynamic technique in ship control design. Ships Offshore Struct. 16(1), 31–45 (2021). https://doi.org/10.1080/17445302.2019.1706908

    Article  Google Scholar 

  19. Oltmann, P., Sharma, S.D.: Simulation of combined engine and rudder maneuvers using an improved model of hull-propeller-rudder interactions. Technical report (1984)

    Google Scholar 

  20. Pedersen, N., Bojsen, T., Madsen, J.: Co-simulation of cyber physical systems with hmi for human in the loop investigations. In: Proceedings of the Symposium on Theory of Modeling & Simulation, pp. 1–12 (2017)

    Google Scholar 

  21. Piaggio, B., Garofano, V., Donnarumma, S., Alessandri, A., Negenborn, R., Martelli, M.: Follow-the-leader control strategy for azimuth propulsion system on surface vessels. In: Proceedings of the 2020 International Ship Control Systems Symposium (iSCSS 2020). Delft, The Netherlands (2020). https://doi.org/10.24868/issn.2631-8741.2020.004

  22. Schiaretti, M., Chen, L., Negenborn, R.R.: Survey on autonomous surface vessels: Part I - a new detailed definition of autonomy levels. In: ICCL 2017. LNCS, vol. 10572, pp. 219–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68496-3_15

    Chapter  Google Scholar 

  23. Schiaretti, M., Chen, L., Negenborn, R.R.: Survey on autonomous surface vessels: Part II - categorization of 60 prototypes and future applications. In: ICCL 2017. LNCS, vol. 10572, pp. 234–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68496-3_16

    Chapter  Google Scholar 

  24. Sheridan, T.B., Verplank, W.L.: Human and computer control of undersea teleoperators. Technical report, Massachusetts Inst of Tech Cambridge Man-Machine Systems Lab (1978)

    Google Scholar 

  25. Shneydor, N.A.: Missile Guidance and Pursuit: Kinematics, Dynamics and Control. Elsevier, Amsterdam (1998)

    Book  Google Scholar 

  26. Singh, Y., Sharma, S., Hatton, D., Sutton, R.: Optimal path planning of unmanned surface vehicles. Indian J. Geo-Mar. Sci. 47(7), 1325–1334 (2018)

    Google Scholar 

  27. Tam, C., Bucknall, R., Greig, A.: Review of collision avoidance and path planning methods for ships in close range encounters. J. Navig. 62(3), 455 (2009)

    Article  Google Scholar 

  28. Wang, L., Wu, Q., Liu, J., Li, S., Negenborn, R.: State-of-the-art research on motion control of maritime autonomous surface ships. J. Mar. Sci. Eng. 7(12), 438 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla Fruzzetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fruzzetti, C., Martelli, M. (2023). Unmanned Surface Vehicle Chase a Moving Target Remotely Controlled. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2022. Lecture Notes in Computer Science, vol 13866. Springer, Cham. https://doi.org/10.1007/978-3-031-31268-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31268-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31267-0

  • Online ISBN: 978-3-031-31268-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics