Skip to main content

Aerial Target System Design for Effective Air Defence Training

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2022)

Abstract

The paper Aerial target system design for effective air defence training deals with the design and definition of on-board components of Unmanned Aerial System (UAS) used for training ground-based air defence (GBAD) units. The main goal of the paper is to define the essential requirements of UAS to be applicable as an aerial target system (ATS). Fundamental elements and the most common autopilots are described, analysed, and compared. The analysis results are implemented over specific scenarios for GBAD units training in the tactical simulator environment (Re-PLAN). The tactical simulator environment is specifically designed for GBAD capabilities evaluation and includes the various options of scenario settings and verification (e.g. optical visibility evaluation, radar, fire unit effectivity, etc.) The obtained results are summarized and implemented into exercise variants using the target drone and the proposed onboard system, which is suitable for different types of GBAD system principles (visual, IR, radar).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fletcher, J.D., Chatelier, P.R.: An Overview of Military Training (2000)

    Google Scholar 

  2. Maňák, M.: Návrh palubního systému vzdušného cíle pro cvičení obsluh prostředků PVO (thesis, Czech). Univerzita obrany, Brno (2022)

    Google Scholar 

  3. Kacer, J., et al.: Physiological data monitoring of members of air forces during training on simulators. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018. IP, vol. 68/3, pp. 855–860. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-9023-3_154

    Chapter  Google Scholar 

  4. VTU homepage - Robotsystem 70 against Miss Tractor. https://www.vtusp.cz/en/uncategorized/robotsystem-70-proti-bezpilotnimu-prostredku-iss-ractor/. Accessed 21 July 2022

  5. Kratos aerial targets. https://www.kratosdefense.com/systems-and-platforms/unmanned-systems/aerial/aerial-targets. Accessed 21 July 2022

  6. Siouris, G.M.: Missile Guidance and Control Systems [Online]. Springer, Heidelberg (2004). https://doi.org/10.1007/b97614

  7. Stefek, A., Casar, J., Stary, V., Gacho, L.: Coupling of ODE and DES Models for Simulation of Air Defence in War-Gaming Experiment (2022). https://doi.org/10.2507/ijsimm21-1-586

  8. Stefek, A., Casar, J., Stary, V.: Flight route generator for simulation-supported wargaming (2020). https://doi.org/10.1109/ME49197.2020.9286646

  9. Sigford, J.V., Parvin, R.H.: Project pattern: a methodology for determining relevance in complex decision-making (1965). https://doi.org/10.1109/TEM.1965.6446433

  10. PX4 autopilot user guide. http://docs.px4.io/main/en/. Accessed 21 July 2022

  11. Retia – Replan C4I simulator [CZ]. https://retia.cz/vojenske-a-bezpecnostni-systemy/systemy-veleni-a-rizeni-c4i2/c4i-vshorad/replan/. Accessed 21 July 2022

  12. Stary, V., Farlik, J.: Aspects of air defence units C2 system modelling and simulation. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 351–360. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_28

    Chapter  Google Scholar 

  13. Author, F.: Article title. Journal 2(5), 99–110 (2016)

    Google Scholar 

  14. Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) Conference 2016. LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016)

    Google Scholar 

  15. Author, F., Author, S., Author, T.: Book Title, 2nd edn. Publisher, Location (1999)

    Google Scholar 

  16. Author, F.: Contribution title. In: 9th International Proceedings, pp. 1–2. Publisher, Location (2010)

    Google Scholar 

  17. LNCS Homepage. http://www.springer.com/lncs. Accessed 21 Nov 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Starý .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Starý, V., Gacho, L., Maňák, M. (2023). Aerial Target System Design for Effective Air Defence Training. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2022. Lecture Notes in Computer Science, vol 13866. Springer, Cham. https://doi.org/10.1007/978-3-031-31268-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31268-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31267-0

  • Online ISBN: 978-3-031-31268-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics