Abstract
In recent work, Backendal, Haller, and Paterson identified several exploitable vulnerabilities in the cloud storage provider MEGA. They demonstrated an RSA key recovery attack in which a malicious server could recover a client’s private RSA key after 512 client login attempts. We show how to exploit additional information revealed by MEGA’s protocol vulnerabilities to give an attack that requires only six client logins to recover the secret key.
Our optimized attack combines several cryptanalytic techniques. In particular, we formulate and give a solution to a variant of the hidden number problem with small unknown multipliers, which may be of independent interest. We show that our lattice construction for this problem can be used to give improved results for the implicit factorization problem of May and Ritzenhofen.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin functions: certain parts are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988). https://doi.org/10.1137/0217013
Backendal, M., Haller, M., Paterson, K.G.: MEGA: malleable encryption goes awry. In: 2023 IEEE Symposium on Security and Privacy (SP), pp. 450–467 (2023). https://doi.org/10.1109/SP46215.2023.00026
Bauer, A., Joux, A.: Toward a rigorous variation of coppersmith’s algorithm on three variables. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 361–378. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_21
Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden number problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_3
Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve Diffie-Hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 201–212. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_12
Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_11
Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_16
De Mulder, E., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 435–452. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_25
Faugère, J.-C., Marinier, R., Renault, G.: Implicit factoring with shared most significant and middle bits. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 70–87. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_5
Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_3
Garner, H.L.: The residue number system. In: Papers Presented at the the 3–5 March 1959, Western Joint Computer Conference, pp. 146–153. IRE-AIEE-ACM 1959 (Western), Association for Computing Machinery, New York, NY, USA (1959). https://doi.org/10.1145/1457838.1457864
Hlaváč, M., Rosa, T.: Extended hidden number problem and its cryptanalytic applications. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 114–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7_9
Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes. Des. Codes Crypt. 23(3), 283–290 (2001). https://doi.org/10.1023/A:1011214926272
Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458
Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2_6
Howgrave-Graham, N.A., Nguyen, P.Q., Shparlinski, I.E.: Hidden number problem with hidden multipliers, timed-release crypto, and noisy exponentiation. Math. Comput. 72(243), 1473–1485 (2003)
Jutla, C.S.: On finding small solutions of modular multivariate polynomial equations. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 158–170. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054124
Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979). https://doi.org/10.1137/0208040
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982). https://doi.org/10.1007/BF01457454
Lu, Y., Peng, L., Zhang, R., Hu, L., Lin, D.: Towards optimal bounds for implicit factorization problem. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 462–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6_26
May, A., Ritzenhofen, M.: Implicit factoring: on polynomial time factoring given only an implicit hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 1–14. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_1
Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: Nguyen, P., (eds.) The LLL Algorithm. Information Security and Cryptography, pp. 19–69. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02295-1
Nguyen, P.Q., Stehlé, D.: LLL On the average. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006). https://doi.org/10.1007/11792086_18
Ortmann, M.: MEGA security update (2022). https://blog.mega.io/mega-security-update/
Peng, L., Hu, L., Xu, J., Huang, Z., Xie, Y.: Further improvement of factoring RSA moduli with implicit hint. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 165–177. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_11
Ryan, K., Heninger, N.: The hidden number problem with small unknown multipliers: cryptanalyzing MEGA in six queries and other applications. Cryptology ePrint Archive, Report 2022/914 (2022). https://eprint.iacr.org/2022/914
Sarkar, S., Maitra, S.: Further results on implicit factoring in polynomial time. Adv. Math. Commun. 3(2), 205–217 (2009). https://doi.org/10.3934/amc.2009.3.205
Sarkar, S., Maitra, S.: Approximate integer common divisor problem relates to implicit factorization. IEEE Trans. Inf. Theory 57(6), 4002–4013 (2011). https://doi.org/10.1109/TIT.2011.2137270
Wang, S., Qu, L., Li, C., Fu, S.: A better bound for implicit factorization problem with shared middle bits. Sci. Chin. Inf. Sci. 61(3), 1–10 (2017). https://doi.org/10.1007/s11432-017-9176-5
Acknowledgment
We thank Miro Haller and Kenny Paterson for their helpful comments on an earlier draft, insightful discussions, and providing further context. This material is based upon work supported by the National Science Foundation under grants no. 2048563 and 1913210.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Heninger, N., Ryan, K. (2023). The Hidden Number Problem with Small Unknown Multipliers: Cryptanalyzing MEGA in Six Queries and Other Applications. In: Boldyreva, A., Kolesnikov, V. (eds) Public-Key Cryptography – PKC 2023. PKC 2023. Lecture Notes in Computer Science, vol 13940. Springer, Cham. https://doi.org/10.1007/978-3-031-31368-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-31368-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31367-7
Online ISBN: 978-3-031-31368-4
eBook Packages: Computer ScienceComputer Science (R0)