Abstract
In recent history of fully homomorphic encryption, bootstrapping has been actively studied throughout many HE schemes. As bootstrapping is an essential process to transform somewhat homomorphic encryption schemes into fully homomorphic, enhancing its performance is one of the key factors of improving the utility of homomorphic encryption.
In this paper, we propose an extended bootstrapping for TFHE, which we name it by \(\textsf{EBS}\). One of the main drawback of TFHE bootstrapping was that the precision of bootstrapping is mainly decided by the polynomial dimension N. Thus if one wants to bootstrap with high precision, one must enlarge N, or take alternative method. Our \(\textsf{EBS}\) enables to use small N for parameter selection, but to bootstrap in higher dimension to keep high precision. Moreover, it can be easily parallelized for faster computation. Also, the \(\textsf{EBS}\) can be easily adapted to other known variants of TFHE bootstrappings based on the original bootstrapping algorithm.
We implement our \(\textsf{EBS}\) along with the full domain bootstrapping methods known (\(\textsf{FDFB}\), \(\textsf{TOTA}\), \(\textsf{Comp}\)), and show how much our \(\textsf{EBS}\) can improve the precision for those bootstrapping methods. We provide experimental results and thorough analysis with our \(\textsf{EBS}\), and show that \(\textsf{EBS}\) is capable of bootstrapping with high precision even with small N, thus small key size, and small complexity than selecting large N by birth.
© IACR 2023. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 17th February 2023. The version published by Springer-Verlag is available at https://doi.org/00.00000/0000000000.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Cryptology ePrint Archive, Paper 2015/046 (2015). https://eprint.iacr.org/2015/046, https://eprint.iacr.org/2015/046
Bae, Y., Cheon, J.H., Cho, W., Kim, J., Kim, T.: Meta-BTS: bootstrapping precision beyond the limit. Cryptology ePrint Archive (2022)
Bergerat, L., et al.: Parameter optimization & larger precision for (T) FHE. Cryptology ePrint Archive (2022)
Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Simulating homomorphic evaluation of deep learning predictions. In: Dolev, S., Hendler, D., Lodha, S., Yung, M. (eds.) CSCML 2019. LNCS, vol. 11527, pp. 212–230. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20951-3_20
Boura, C., Gama, N., Georgieva, M., Jetchev, D.: CHIMERA: combining ring-LWE-based fully homomorphic encryption schemes. J. Math. Cryptol. 14(1), 316–338 (2020)
Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_17
Bourse, F., Sanders, O., Traoré, J.: Improved secure integer comparison via homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 391–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_17
Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value input homomorphic evaluation and applications. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 106–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_6
Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_14
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_14
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption library (2016). https://tfhe.github.io/tfhe/
Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient homomorphic inference of deep neural networks. In: Dolev, S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds.) CSCML 2021. LNCS, vol. 12716, pp. 1–19. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78086-9_1
Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for TFHE. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 670–699. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_23
Clet, P.E., Zuber, M., Boudguiga, A., Sirdey, R., Gouy-Pailler, C.: Putting up the swiss army knife of homomorphic calculations by means of TFHE functional bootstrapping (2022). https://eprint.iacr.org/2022/149
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Espitau, T., Joux, A., Kharchenko, N.: On a dual/hybrid approach to small secret LWE. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 440–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_20
Gentry, C.: A fully homomorphic encryption scheme. Stanford university (2009)
Guimaraes, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in TFHE. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2), 229–253 (2021)
Joye, M., Paillier, P.: Blind rotation in fully homomorphic encryption with extended keys. In: Dolev, S., Katz, J., Meisels, A. (eds.) CSCML 2022. LNCS, vol. 13301, pp. 1–18. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07689-3_1
Klemsa, J.: Fast and error-free negacyclic integer convolution using extended Fourier transform. In: Dolev, S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds.) CSCML 2021. LNCS, vol. 12716, pp. 282–300. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78086-9_22
Klemsa, J.: Setting up efficient TFHE parameters for multivalue plaintexts and multiple additions. Cryptology ePrint Archive (2021)
Klemsa, J., Önen, M.: Parallel operations over TFHE-encrypted multi-digit integers. In: Proceedings of the Twelveth ACM Conference on Data and Application Security and Privacy, pp. 288–299 (2022)
Kluczniak, K., Schild, L.: FDFB: full domain functional bootstrapping towards practical fully homomorphic encryption. arXiv preprint arXiv:2109.02731 (2021)
Lee, E., et al.: Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions. In: International Conference on Machine Learning, pp. 12403–12422. PMLR (2022)
Lee, J.W., et al.: Privacy-preserving machine learning with fully homomorphic encryption for deep neural network. IEEE Access 10, 30039–30054 (2022)
Lee, Y., Lee, J.W., Kim, Y.S., Kim, Y., No, J.S., Kang, H.: High-precision bootstrapping for approximate homomorphic encryption by error variance minimization. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13275, pp. 551–580. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06944-4_19
Lee, Y., et al.: Efficient FHEW bootstrapping with small evaluation keys, and applications to threshold homomorphic encryption. Cryptology ePrint Archive (2022)
Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign evaluation using FHEW/TFHE bootstrapping. Cryptology ePrint Archive (2021)
Lu, W.J., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: bridging polynomial and non-polynomial evaluations in homomorphic encryption. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 1057–1073. IEEE (2021)
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM (JACM) 60(6), 1–35 (2013)
Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. In: Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, pp. 17–28 (2021)
Okada, H., Kiyomoto, S., Cid, C.: Integer-wise functional bootstrapping on TFHE: applications in secure integer arithmetics. Information 12(8), 297 (2021)
Paul, J., Tan, B.H.M., Veeravalli, B., Aung, K.M.M.: Non-interactive decision trees and applications with multi-bit TFHE. Algorithms 15(9), 333 (2022)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 1–40 (2009)
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
Yang, Z., Xie, X., Shen, H., Chen, S., Zhou, J.: TOTA: fully homomorphic encryption with smaller parameters and stronger security. Cryptology ePrint Archive (2021)
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022R1F1A1074291).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Appendix
A Appendix
1.1 A.1 Noise Analysis
We present detailed analysis of noise for the \(\textsf{BlindRotate}\), \(\textsf{KeySwitch}\), and \(\textsf{FDFB}\text {-}\textsf{ACC}\) in Table 5. Due to the error added during polynomial multiplication (with FFT), the experimental error standard deviation for \(N \ge 2048\) is larger than estimated results.
1.2 A.2 Benchmarks
In this section, we present the benchmark results for our parallelized and non-parallelized \(\textsf{EBS}\) along with the benchmarks for three full-domain bootstrapping methods. Note that none of the operations except the \(\textsf{EBS}\) were parallelized for fair comparison (Table 6).
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Lee, K.H., Yoon, J.W. (2023). Discretization Error Reduction for High Precision Torus Fully Homomorphic Encryption. In: Boldyreva, A., Kolesnikov, V. (eds) Public-Key Cryptography – PKC 2023. PKC 2023. Lecture Notes in Computer Science, vol 13941. Springer, Cham. https://doi.org/10.1007/978-3-031-31371-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-31371-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31370-7
Online ISBN: 978-3-031-31371-4
eBook Packages: Computer ScienceComputer Science (R0)